[1] |
Wang HC, Fu TF, Du YQ, Gao WH, Huang KX, Liu ZM, et al.Scientific discovery in the age of artificial intelligence.Nature 2023; 620(7972):47-60.
|
[2] |
LeCun Y, Bengio Y, Hinton G.Deep learning.Nature 2015; 521(7553):436-444.
|
[3] |
Krizhevsky A, Sutskever I, Hinton G.ImageNet classification with deep convolutional neural networks.Commun ACM 2017; 60(6):84-90.
|
[4] |
Zuo C, Qian JM, Feng SJ, Yin W, Li YX, Fan PF, et al.Deep learning in optical metrology: a review.Light Sci Appl 2022; 11:39.
|
[5] |
Ma W, Liu ZC, Kudyshev ZA, Boltasseva A, Cai WS, Liu YM.Deep learning for the design of photonic structures.Nat Photonics 2021; 15(2):77-90.
|
[6] |
Wu YC, Han XF, Su YJ, Glidewell M, Daniels JS, Liu JM, et al.Multiview confocal super-resolution microscopy.Nature 2021; 600(7888):279-284.
|
[7] |
Lundstrom M.Moore’s law forever?.Science 2003; 299(5604):210-211.
|
[8] |
Li C, Zhang X, Li JW, Fang T, Dong XW.The challenges of modern computing and new opportunities for optics.PhotoniX 2021; 2:20.
|
[9] |
AI and compute [Internet]. San Francisco: Open AI; 2018 May 16 [cited 2024 Jul 7]. Available from: https://openai.com/blog/ai-and-compute.
|
[10] |
Dhar P.The carbon impact of artificial intelligence.Nat Mach Intell 2020; 2(8):423-425.
|
[11] |
Akhoon MS, Suandi SA, Alshahrani A, Saad AMHY, Albogamy FR, Abdullah MZB, et al.High performance accelerators for deep neural networks: a review.Expert Syst 2022; 39:e12831.
|
[12] |
Palmer C.Neuromorphic computing advances deep-learning applications.Engineering 2020; 6(8):854-856.
|
[13] |
Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, et al.Modern microprocessor built from complementary carbon nanotube transistors.Nature 2019; 572(7771):595-602.
|
[14] |
Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O JL’Brien.Quantum computers.Nature 2010; 464(7285):45-53.
|
[15] |
Zhang H, Zhang L, Lin A, Xu CC, Li ZY, Liu KB, et al.Algorithm for optimized mRNA design improves stability and immunogenicity.Nature 2023; 621(7978):396-403.
|
[16] |
Wu JM, Lin X, Guo YC, Liu JW, Fang L, Jiao SM, et al.Analog optical computing for artificial intelligence.Engineering 2022; 10:133-145.
|
[17] |
McMahon P.The physics of optical computing.Nat Rev Phys 2023; 5:717-734.
|
[18] |
Xiang C, Jin W, Terra O, Dong BZ, Wang HM, Wu L, et al.3D integration enables ultralow-noise isolator-free lasers in silicon photonics.Nature 2023; 620(7972):78-85.
|
[19] |
Shu HW, Chang L, Tao YS, Shen BT, Xie WQ, Jin M, et al.Microcomb-driven silicon photonic systems.Nature 2022; 605(7910):457-463.
|
[20] |
Han CH, Zheng Z, Shu HW, Jin M, Qin J, Chen RX, et al.Slow-light silicon modulator with 110-GHz bandwidth.Science 2023; 9(42):eadi5339.
|
[21] |
J AAørgensen, Kong D, Henriksen MR, Klejs F, Ye Z, Helgason OB, et al.Petabit-per-second data transmission using a chip-scale microcomb ring resonator source.Nat Photonics 2022; 16(11):798-802.
|
[22] |
Wade M, Anderson E, Ardalan S, Bhargava P, Buchbinder S, Davenport ML, et al.TeraPHY: a chiplet technology for low-power, high-bandwidth in-package optical I/O.IEEE Micro 2020; 40:63-71.
|
[23] |
Liu W, Li M, Guzzon RS, Norberg EJ, Parker JS, Lu MZ, et al.A fully reconfigurable photonic integrated signal processor.Nat Photonics 2016; 10(3):190-195.
|
[24] |
Xu ZF, Tang BS, Zhang XY, Leong JF, Pan JM, Hooda S, et al.Reconfigurable nonlinear photonic activation function for photonic neural network based on non-volatile opto-resistive RAM switch.Light Sci Appl 2022; 11:288.
|
[25] |
Sund PI, Lomonte E, Paesani S, Wang Y, Carolan J, Bart N, et al.High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter.Sci Adv 2023; 9(19):eadg7268.
|
[26] |
Polar ID: enabling the next level of biometric security.Boston: Metalenz; [cited 2024 Jul 7].Available from: https://met al.enz.com/polareyes-polarization-imaging-system/polar-id/.
|
[27] |
Willomitzer F, Rangarajan PV, Li FQ, Balaji MM, Christensen MP, Cossairt O.Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography.Nat Commun 2021; 12:6647.
|
[28] |
Deng YH, Gu YC, Liu HL, Gong SQ, Su H, Zhang ZJ, et al.Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage.Phys Rev Lett 2023; 131(15):150601.
|
[29] |
Pan W, Zheng JY, Wang L, Luo Y.A future perspective on in-sensor computing.Engineering 2022; 14:19-21.
|
[30] |
Cao JF, Yip HC, Chen YY, Scheppach M, Luo XB, Yang HZ, et al.Intelligent surgical workflow recognition for endoscopic submucosal dissection with real-time animal study.Nat Commun 2023; 14:6676.
|
[31] |
Baker SB, Xiang W, Atkinson I.Internet of Things for smart healthcare: technologies, challenges, and opportunities.IEEE Access 2017; 5:26521-26544.
|
[32] |
Sludds A, Bandyopadhyay S, Chen ZJ, Zhong ZZ, Cochrane J, Bernstein L, et al.Delocalized photonic deep learning on the internet’s edge.Science 2022; 378(6617):270-276.
|
[33] |
Fu TZ, Zang YB, Huang YY, Du ZM, Huang HH, Hu CY, et al.Photonic machine learning with on-chip diffractive optics.Nat Commun 2023; 14:70.
|
[34] |
Alagappan G, Ong JR, Yang ZF, Ang TYL, Zhao WJ, Jiang Y, et al.Leveraging AI in photonics and beyond.Photonics 2022; 9(2):75.
|
[35] |
Rivenson Y, Zhang YB, Günayd Hın, Teng D, Ozcan A.Phase recovery and holographic image reconstruction using deep learning in neural networks.Light Sci Appl 2017; 7:17141.
|
[36] |
Krenn M, Landgraf J, Foesel T, Marquardt F.Artificial intelligence and machine learning for quantum technologies.Phys Rev A 2023; 107(1):010101.
|
[37] |
Kiarashinejad Y, Abdollahramezani S, Zandehshahvar M, Hemmatyar O, Adibi A.Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices.Adv Theory Simul 2019; 2(9):1900088.
|
[38] |
Barbastathis G, Ozcan A, Situ GH.On the use of deep learning for computational imaging.Optica 2019; 6(8):921-943.
|
[39] |
Zhu XX, Tuia D, Mou L, Xia GS, Zhang LP, Xu F, et al.Deep learning in remote sensing: a comprehensive review and list of resources.IEEE Geosci Remote Sens Mag 2017; 5(4):8-36.
|
[40] |
Ma Q, Liu C, Xiao Q, Gu Z, Gao XX, Li LL, et al.Information metasurfaces and intelligent metasurfaces.Photon Insights 2022; 1(1):R01.
|
[41] |
Liu GX, Liu JF, Zhou WJ, Li LY, You CL, Qiu CW, et al.Inverse design in quantum nanophotonics: combining local-density-of-states and deep learning.Nanophotonics 2023; 12(11):1943-1955.
|
[42] |
Brady DJ, Fang L, Ma Z.Deep learning for camera data acquisition, control, and image estimation.Adv Opt Photonics 2020; 12(4):787-846.
|
[43] |
Wang D, Zhang M.Artificial intelligence in optical communications: from machine learning to deep learning.Front Comms Net 2021; 2:656786.
|
[44] |
Mengu D, Sakib Rahman MS, Luo Y, Li JX, Kulce O, Ozcan A.At the intersection of optics and deep learning: statistical inference, computing, and inverse design.Adv Opt Photonics 2022; 14(2):209-290.
|
[45] |
Wright LG, Onodera T, Stein MM, Wang TY, Schachter DT, Hu Z, et al.Deep physical neural networks trained with backpropagation.Nature 2022; 601(7894):549-555.
|
[46] |
Momeni A, Rahmani B, Mall Méjac, del Hougne P, Fleury R.Backpropagation-free training of deep physical neural networks.Science 2023; 382(6676):1297-1303.
|
[47] |
Caulfield HJ, Dolev S.Why future supercomputing requires optics.Nat Photonics 2010; 4(5):261-263.
|
[48] |
Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM, Zhang JM, et al.All-optical logic gate computing for high-speed parallel information processing.Opto Electron Sci 2022; 1(9):220010.
|
[49] |
Wang J, Long Y.On-chip silicon photonic signaling and processing: a review.Sci Bull 2018; 63(19):1267-1310.
|
[50] |
Lin X, Liu JP, Hao JY, Wang K, Zhang YY, Li H, et al.Collinear holographic data storage technologies.Opto Electron Adv 2020; 3(3):190004.
|
[51] |
Ding XM, Zhao ZH, Xie P, Cai DY, Meng FY, Wang C, et al.Metasurface-based optical logic operators driven by diffractive neural networks.Adv Mater 2023; 36(9):2308993.
|
[52] |
Solli DR, Jalali B.Analog optical computing.Nat Photonics 2015; 9(11):704-706.
|
[53] |
Goodman JW, Dias AR, Woody LM.Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms.Opt Lett 1978; 2(1):1-3.
|
[54] |
Chen YS.4f-Type optical system for matrix multiplication.Opt Eng 1993; 32(1):77-79.
|
[55] |
Lee DD, Seung HS.Learning the parts of objects by non-negative matrix factorization.Nature 1999; 401(6755):788-791.
|
[56] |
Shou YC, Wang Y, Miao LL, Chen SZ, Luo HL.Realization of all-optical higher-order spatial differentiators based on cascaded operations.Opt Lett 2022; 47(22):5981-5984.
|
[57] |
Chen MK, Liu XY, Sun YN, Tsai DP.Artificial intelligence in meta-optics.Chem Rev 2022; 122(19):15356-15413.
|
[58] |
Situ GH.Deep holography.Light Adv Manuf 2022; 3(2):278-300.
|
[59] |
Zhong HS, Wang H, Deng YH, Chen MC, Peng LC, Luo YH, et al.Quantum computational advantage using photons.Science 2020; 370(6523):1460-1463.
|
[60] |
Shen YC, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, et al.Deep learning with coherent nanophotonic circuits.Nat Photonics 2017; 11(7):441-446.
|
[61] |
Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP.All-optical spiking neurosynaptic networks with self-learning capabilities.Nature 2019; 569(7755):208-214.
|
[62] |
Wang JW, Sciarrino F, Laing A, Thompson MG.Integrated photonic quantum technologies.Nat Photonics 2020; 14(5):273-284.
|
[63] |
Su YK, He Y, Guo XH, Xie WQ, Ji XC, Wang HW, et al.Scalability of large-scale photonic integrated circuits.ACS Photonics 2023; 10(7):2020-2030.
|
[64] |
Blumenthal DJ.Photonic integration for UV to IR applications.APL Photonics 2020; 5(2):020903.
|
[65] |
Kaur P, Boes A, Ren G, Nguyen TG, Roelkens G, Mitchell A.Hybrid and heterogeneous photonic integration.APL Photonics 2021; 6(6):061102.
|
[66] |
Yi XG, Zeng HY, Gao S, Qiu CY.Design of an ultra-compact low-crosstalk sinusoidal silicon waveguide array for optical phased array.Opt Express 2020; 28(25):37505-37513.
|
[67] |
He MB, Xu MY, Ren YX, Jian J, Ruan ZL, Xu YS, et al.High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit·s−1 and beyond.Nat Photonics 2019; 13(5):359-364.
|
[68] |
Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al.All-optical machine learning using diffractive deep neural networks.Science 2018; 361(6406):1004-1008.
|
[69] |
Zhou TK, Lin X, Wu JM, Chen YT, Xie H, Li YP, et al.Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit.Nat Photonics 2021; 15(5):367-373.
|
[70] |
Qian C, Lin X, Lin XB, Xu J, Sun Y, Li EP, et al.Performing optical logic operations by a diffractive neural network.Light Sci Appl 2020; 9:59.
|
[71] |
PACE: photonic arithmetic computing engine [Internet]. Boston: Lightelligence Co., Ltd; [cited 2024 Jul 7]. Available: https://www.lightelligence.ai/index.php/product/index/2.html.
|
[72] |
Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al.Parallel convolutional processing using an integrated photonic tensor core.Nature 2021; 589(7840):52-58.
|
[73] |
Meng XY, Zhang GJ, Shi NN, Li GY, Azana J, Capmany J, et al.Compact optical convolution processing unit based on multimode interference.Nat Commun 2023; 14:3000.
|
[74] |
Cheng JW, Xie YZ, Liu Y, Song JJ, Liu XY, He ZM, et al.Human emotion recognition with a microcomb-enabled integrated optical neural network.Nanophotonics 2023; 12(20):3883-3894.
|
[75] |
Xu XY, Tan MX, Corcoran B, Wu JY, Boes A, Nguyen TG, et al.11 Tops photonic convolutional accelerator for optical neural networks.Nature 2021; 589(7840):44-51.
|
[76] |
Chen YT, Nazhamaiti M, Xu H, Meng Y, Zhou TK, Li GP, et al.All-analog photoelectronic chip for high-speed vision tasks.Nature 2023; 623(7985):48-57.
|
[77] |
Bouvier M, Valentian A, Mesquida T, Rummens F, Reyboz M, Vianello E, et al.Spiking neural networks hardware implementations and challenges: a survey.ACM J Emerg Technol Comput Syst 2019; 15(2):1-35.
|
[78] |
Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, et al.In-datacenter performance analysis of a tensor processing unit.In: Proceedings of the 44th Annual International Symposium on Computer Architecture; 2017 Jun 24–28; Toronto, ON, Canada. New York City: IEEE; 2017. p. 1–12
|
[79] |
NVIDIA A100 tensor core GPU [Internet]. Santa Clara: NVIDIA Corporation; [cited 2024 Jul 7]. Available from: https://www.nvidia.com/en-us/data-center/a100/.
|
[80] |
Shrestha A, Mahmood A.Review of deep learning algorithms and architectures.IEEE Access 2019; 7:53040-53065.
|
[81] |
Hinton GE, Salakhutdinov RR.Reducing the dimensionality of data with neural networks.Science 2006; 313(5786):504-507.
|
[82] |
De Lima TF, Shastri BJ, Tait AN, Nahmias MA, Prucnal PR.Progress in neuromorphic photonics.Nanophotonics 2017; 6(3):577-599.
|
[83] |
Pellizzari CJ, Bate TJ, Donnelly KP, Buzzard GT, Bouman CA, Spencer MF.Coherent plug-and-play artifact removal: physics-based deep learning for imaging through aberrations.Opt Lasers Eng 2023; 164:107496.
|
[84] |
Vishniakou I, Seelig JD.Wavefront correction for adaptive optics with reflected light and deep neural networks.Opt Express 2020; 28(10):15459-15471.
|
[85] |
Rivenson Y, Gorocs Z, Gunaydin H, Zhang YB, Wang HD, Ozcan A.Deep learning microscopy.Optica 2017; 4(11):1437-1443.
|
[86] |
Qiao C, Li D, Guo YT, Liu C, Jiang T, Dai QH, et al.Evaluation and development of deep neural networks for image super-resolution in optical microscopy.Nat Methods 2021; 18(2):194-202.
|
[87] |
Li S, Deng M, Lee J, Sinha A, Barbastathis G.Imaging through glass diffusers using densely connected convolutional networks.Optica 2018; 5(7):803-813.
|
[88] |
Li YZ, Xue YJ, Tian L.Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media.Optica 2018; 5(10):1181-1190.
|
[89] |
Wang KQ, Song L, Wang CT, Ren ZB, Zhao GY, Dou JZ, et al.On the use of deep learning for phase recovery.Light Sci Appl 2024; 13:4.
|
[90] |
Sinha A, Lee J, Li S, Barbastathis G.Lensless computational imaging through deep learning.Optica 2017; 4(9):1117-1125.
|
[91] |
Wu JC, Cao LC, Barbastathis G.DNN-FZA camera: a deep learning approach toward broadband FZA lensless imaging.Opt Lett 2021; 46(1):130-133.
|
[92] |
Wang CH, Ma J, Feng YD, Xu XY, Zhang TY, Cheng K, et al.Error-free long-lifespan optical storage enhanced by deep learning.Laser Photonics Rev 2024; 18(6):2301042.
|
[93] |
Wiecha PR, Lecestre A, Mallet N, Larrieu G.Pushing the limits of optical information storage using deep learning.Nat Nanotechnol 2019; 14(3):237-244.
|
[94] |
So S, Badloe T, Noh J, Rho J, Bravo-Abad J, Rho J.Deep learning enabled inverse design in nanophotonics.Nanophotonics 2020; 9(5):1041-1057.
|
[95] |
Karanov B, Chagnon M, Thouin F, Eriksson TA, Bülow H, Lavery D, et al.End-to-end deep learning of optical fiber communications.J Lit Technol 2018; 36(20):4843-4855.
|
[96] |
Ballard Z, Brown C, Madni AM, Ozcan A.Machine learning and computation-enabled intelligent sensor design.Nat Mach Intell 2021; 3(7):556-565.
|
[97] |
Jing LL, Tian YL.Self-supervised visual feature learning with deep neural networks: a survey.IEEE Trans Pattern Anal Mach Intell 2021; 43(11):4037-4058.
|
[98] |
Jiang XT, Wang DS, Fan QR, Zhang M, Chao L, Lau APT.Physics-informed neural network for nonlinear dynamics in fiber optics.Laser Photonics Rev 2022; 16(9):2100483.
|
[99] |
Pan SJ, Yang Q.A survey on transfer learning.IEEE Trans Knowl Data Eng 2010; 22(10):1345-1359.
|
[100] |
Baker B, Gupta O, Naik N, Raskar R.Designing neural network architectures using reinforcement learning.2016. arXiv:1611.02167v3.
|
[101] |
Zhou HL, Dong JJ, Cheng JW, Dong WC, Huang CR, Shen YC, et al.Photonic matrix multiplication lights up photonic accelerator and beyond.Light Sci Appl 2022; 11:30.
|
[102] |
Farhat NH, Psaltis D, Prata A, Paek E.Optical implementation of the Hopfield model.Appl Opt 1985; 24:1469.
|
[103] |
Liu J, Wu QH, Sui XB, Chen Q, Gu GH, Wang LP, et al.Research progress in optical neural networks: theory, applications and developments.PhotoniX 2021; 2:5.
|
[104] |
Shastri BJ, Tait AN, Ferreira de Lima T, Pernice WHP, Bhaskaran H, Wright CD, et al.Photonics for artificial intelligence and neuromorphic computing.Nat Photonics 2021; 15(2):102-114.
|
[105] |
Wetzstein G, Ozcan A, Gigan S, Fan SH, Englund D, Soljacic M, et al.Inference in artificial intelligence with deep optics and photonics.Nature 2020; 588(7836):39-47.
|
[106] |
Bogaerts W, Perez D, Capmany J, Miller DAB, Poon J, Englund D, et al.Programmable photonic circuits.Nature 2020; 586(7828):207-216.
|
[107] |
Wilkes CM, Qiang X, Wang J, Santagati R, Paesani S, Zhou X, et al.60 dB high-extinction auto-configured Mach–Zehnder interferometer.Opt Lett 2016; 41(22):5318-5321.
|
[108] |
Mourgias-Alexandris G, Moralis-Pegios M, Tsakyridis A, Simos S, Dabos G, Totovic A, et al.Noise-resilient and high-speed deep learning with coherent silicon photonics.Nat Commun 2022; 13:5572.
|
[109] |
Kirtas M, Oikonomou A, Passalis N, Mourgias-Alexandris G, Moralis-Pegios M, Pleros N, et al.Quantization-aware training for low precision photonic neural networks.Neural Netw 2022; 155:561-573.
|
[110] |
Giamougiannis G, Tsakyridis A, Moralis-Pegios M, Pappas C, Kirtas M, Passalis N, et al.Analog nanophotonic computing going practical: silicon photonic deep learning engines for tiled optical matrix multiplication with dynamic precision.Nanophotonics 2023; 12(5):963-973.
|
[111] |
Zhu HH, Zou J, Zhang H, Shi YZ, Luo SB, Wang N, et al.Space-efficient optical computing with an integrated chip diffractive neural network.Nat Commun 2022; 13:1044.
|
[112] |
Tait AN, De Lima TF, Zhou E, Wu AX, Nahmias MA, Shastri BJ, et al.Neuromorphic photonic networks using silicon photonic weight banks.Sci Rep 2017; 7:7430.
|
[113] |
Tait AN, Nahmias MA, Shastri BJ, Prucnal PR.Broadcast and weight: an integrated network for scalable photonic spike processing.J Lit Technol 2014; 32(21):4029-4041.
|
[114] |
Bai BW, Yang QP, Shu HW, Chang L, Yang FH, Shen BT, et al.Microcomb-based integrated photonic processing unit.Nat Commun 2023; 14:66.
|
[115] |
Wang XY, Qiu XK, Liu ML, Liu F, Li MM, Xue LP, et al.Flat soliton microcomb source.Opto Electron Sci 2023; 2(12):230024.
|
[116] |
Kulce O, Mengu D, Rivenson Y, Ozcan A.All-optical information-processing capacity of diffractive surfaces.Light Sci Appl 2021; 10:25.
|
[117] |
Mengu D, Zhao YF, Yardimci NT, Rivenson Y, Jarrahi M, Ozcan A.Misalignment resilient diffractive optical networks.Nanophotonics 2020; 9(13):4207-4219.
|
[118] |
Zheng MJ, Shi L, Zi J.Optimize performance of a diffractive neural network by controlling the Fresnel number.Photonics Res 2022; 10:2667-2676.
|
[119] |
Chen H, Feng JA, Jiang MW, Wang YQ, Lin J, Tan JB, et al.Diffractive deep neural networks at visible wavelengths.Engineering 2021; 7(10):1483-1491.
|
[120] |
Luo Y, Mengu D, Yardimci NT, Rivenson Y, Veli M, Jarrahi M, et al.Design of task-specific optical systems using broadband diffractive neural networks.Light Sci Appl 2019; 8:112.
|
[121] |
Li JX, Gan TY, Bai BJ, Luo Y, Jarrahi M, Ozcan A.Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network.Adv Photonics 2023; 5(1):016003.
|
[122] |
Duan ZY, Chen H, Lin X.Optical multi-task learning using multi-wavelength diffractive deep neural networks.Nanophotonics 2023; 12(5):893-903.
|
[123] |
Yan T, Wu JM, Zhou TK, Xie H, Xu F, Fan JT, et al.Fourier-space diffractive deep neural network.Phys Rev Lett 2019; 123(2):023901.
|
[124] |
Hu ZB, Li SR, Schwartz RLT, Solyanik-Gorgone M, Miscuglio M, Gupta P, et al.High-throughput multichannel parallelized diffraction convolutional neural network accelerator.Laser Photonics Rev 2022; 16(12):2200213.
|
[125] |
Zhou TK, Fang L, Yan T, Wu JM, Li YP, Fan JT, et al.In situ optical backpropagation training of diffractive optical neural networks.Photon Res 2020; 8(6):940-953.
|
[126] |
Xu ZH, Yuan XY, Zhou TK, Fang L.A multichannel optical computing architecture for advanced machine vision.Light Sci Appl 2022; 11:255.
|
[127] |
Yan T, Yang R, Zheng ZY, Lin X, Xiong HK, Dai QH.All-optical graph representation learning using integrated diffractive photonic computing units.Sci Adv 2022; 8(24):eabn7630.
|
[128] |
Qu YR, Zhu HZ, Shen YC, Zhang J, Tao CN, Ghosh PT, et al.Inverse design of an integrated-nanophotonics optical neural network.Sci Bull 2020; 65(14):1177-1183.
|
[129] |
Khoram E, Chen A, Liu DJ, Ying L, Wang QQ, Yuan M, et al.Nanophotonic media for artificial neural inference.Photon Res 2019; 7(8):823-827.
|
[130] |
Muminov B, Vuong LT.Fourier optical preprocessing in lieu of deep learning.Optica 2020; 7(9):1079-1088.
|
[131] |
Muminov B, Perry A, Hyder R, Asif MS, Vuong LT.Toward simple, generalizable neural networks with universal training for low-SWaP hybrid vision.Photon Res 2021; 9(7):B253-B261.
|
[132] |
Chang J, Sitzmann V, Dun X, Heidrich W, Wetzstein G.Hybrid optical–electronic convolutional neural networks with optimized diffractive optics for image classification.Sci Rep 2018; 8:12324.
|
[133] |
Martel JNP, Mueller LK, Carey SJ, Dudek P, Wetzstein G.Neural sensors: learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors.IEEE Trans Pattern Anal Mach Intell 2020; 42:1642-1653.
|
[134] |
Li JX, Mengu D, Yardimci NT, Luo Y, Li XR, Veli M, et al.Spectrally encoded single-pixel machine vision using diffractive networks.Sci Adv 2021; 7(13):eabd7690.
|
[135] |
Shi WX, Huang Z, Huang HH, Hu CY, Chen MH, Yang SG, et al.LOEN: lensless opto-electronic neural network empowered machine vision.Light Sci Appl 2022; 11:121.
|
[136] |
Wang H, Zhan ZY, Hu FT, Meng Y, Liu ZQ, Fu X, et al.Intelligent optoelectronic processor for orbital angular momentum spectrum measurement.PhotoniX 2023; 4:9.
|
[137] |
Shen YW, Li RQ, Liu GT, Yu JY, He XM, Yi LL, et al.Deep photonic reservoir computing recurrent network.Optica 2023; 10(12):1745-1751.
|
[138] |
Xiang SY, Shi YC, Guo XX, Zhang YH, Wang HJ, Zheng DZ, et al.Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber.Optica 2023; 10(2):162-171.
|
[139] |
Liu ZY, Wang DY, Gao H, Li MX, Zhou HX, Zhang C.Metasurface-enabled augmented reality display: a review.Adv Photonics 2023; 5(3):034001.
|
[140] |
Neshev DN, Miroshnichenko AE.Enabling smart vision with metasurfaces.Nat Photonics 2023; 17(1):26-35.
|
[141] |
Ou K, Wan HY, Wang GF, Zhu JY, Dong SY, He T, et al.Advances in meta-optics and metasurfaces: fundamentals and applications.Nanomaterials 2023; 13(7):1235.
|
[142] |
Jiang Q, Jin GF, Cao LC.When metasurface meets hologram: principle and advances.Adv Opt Photonics 2019; 11(3):518-576.
|
[143] |
Dorrah AH, Capasso F.Tunable structured light with flat optics.Science 2022; 376(6591):eabi6860.
|
[144] |
Kim I, Martins RJ, Jang J, Badloe T, Khadir S, Jung HY, et al.Nanophotonics for light detection and ranging technology.Nat Nanotechnol 2021; 16(5):508-524.
|
[145] |
Zhao RZ, Huang LL, Wang YT.Recent advances in multi-dimensional metasurfaces holographic technologies.PhotoniX 2020; 1:20.
|
[146] |
Fan KB, Suen JY, Liu XY, Padilla WJ.All-dielectric metasurface absorbers for uncooled terahertz imaging.Optica 2017; 4(6):601-604.
|
[147] |
Nie S, Akyildiz IF.Metasurfaces for multiplexed communication.Nat Electron 2021; 4(3):177-178.
|
[148] |
Zhao XG, Sun ZC, Zhang LY, Wang ZL, Xie RB, Zhao JH, et al.Review on metasurfaces: an alternative approach to advanced devices and instruments.Adv Devices Instrum 2022; 2022:9765089.
|
[149] |
Yang F, Shalaginov MY, Lin HI, An SS, Agarwal A, Zhang HL, et al.Wide field-of-view metalens: a tutorial.Adv Photonics 2023; 5(3):033001.
|
[150] |
Wesemann L, Rickett J, Song JC, Lou JQ, Hinde E, Davis TJ, et al.Nanophotonics enhanced coverslip for phase imaging in biology.Light Sci Appl 2021; 10:98.
|
[151] |
Altug H, Oh SH, Maier SA, Homola J.Advances and applications of nanophotonic biosensors.Nat Nanotechnol 2022; 17(1):5-16.
|
[152] |
Cheng JP, Sha XB, Zhang H, Chen QM, Qu GY, Song QH, et al.Ultracompact orbital angular momentum sorter on a CMOS chip.Nano Lett 2022; 22(10):3993-3999.
|
[153] |
Krasikov S, Tranter A, Bogdanov A, Kivshar Y.Intelligent metaphotonics empowered by machine learning.Opto Electron Adv 2022; 5(3):210147.
|
[154] |
Veselago VG.Electrodynamics of substances with simultaneously negative and values of ε and μ.Sov Phys Usp 1968; 10(4):509-514.
|
[155] |
Pendry JB, Holden AJ, Stewart WJ, Youngs I.Extremely low frequency plasmons in metallic mesostructures.Phys Rev Lett 1996; 76(25):4773-4776.
|
[156] |
Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al.Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science 2011; 334(6054):333-337.
|
[157] |
Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q.Coding metamaterials, digital metamaterials and programmable metamaterials.Light Sci Appl 2014; 3(10):e218.
|
[158] |
McCulloch W, Pitts W.A logical calculus of the ideas immanent in nervous activity.Bull Math Biol 1943; 5(4):115-133.
|
[159] |
Hinton GE, Osindero S, Teh YW.A fast learning algorithm for deep belief nets.Neural Comput 2006; 18(7):1527-1554.
|
[160] |
Li LL, Ruan HX, Liu C, Li Y, Shuang Y, Alu A, et al.Machine-learning reprogrammable metasurface imager.Nat Commun 2019; 10:1082.
|
[161] |
Liu C, Ma Q, Luo ZJ, Hong QR, Xiao Q, Zhang HC, et al.A programmable diffractive deep neural network based on a digital-coding metasurface array.Nat Electron 2022; 5(2):113-122.
|
[162] |
Huang LL, Muhlenbernd H, Li XW, Song X, Bai BF, Wang YT, et al.Broadband hybrid holographic multiplexing with geometric metasurfaces.Adv Mater 2015; 27(41):6444-6449.
|
[163] |
Arbabi A, Horie Y, Bagheri M, Faraon A.Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission.Nat Nanotechnol 2015; 10(11):937-943.
|
[164] |
Zhao RZ, Sain B, Wei QS, Tang CC, Li XW, Weiss T, et al.Multichannel vectorial holographic display and encryption.Light Sci Appl 2018; 7:95.
|
[165] |
Cheng H, Wei XY, Yu P, Li ZC, Liu Z, Li JJ, et al.Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces.Appl Phys Lett 2017; 110(17):171903.
|
[166] |
Chu CH, Tseng ML, Chen J, Wu PC, Chen YH, Wang HC, et al.Active dielectric metasurface based on phase-change medium.Laser Photonics Rev 2016; 10(6):986-994.
|
[167] |
Della Giovampaola C, Engheta N.Digital metamaterials.Nat Mater 2014; 13(12):1115-1121.
|
[168] |
Wu HT, Liu S, Wan X, Zhang L, Wang D, Li LL, et al.Controlling energy radiations of electromagnetic waves via frequency coding metamaterials.Adv Sci 2017; 4(9):1700098.
|
[169] |
Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J, Dai JY, et al.Space–time-coding digital metasurfaces.Nat Commun 2018; 9:4334.
|
[170] |
Liu S, Zhang HC, Zhang L, Yang QL, Xu Q, Gu JQ, et al.Full-state controls of terahertz waves using tensor coding metasurfaces.ACS Appl Mater Interfaces 2017; 9(25):21503-21514.
|
[171] |
Ma Q, Shi CB, Bai GD, Chen TY, Noor A, Cui TJ.Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit.Adv Opt Mater 2017; 5(23):1700548.
|
[172] |
Chen L, Ma Q, Nie QF, Hong QR, Cui HY, Ruan Y, et al.Dual-polarization programmable metasurface modulator for near-field information encoding and transmission.Photon Res 2021; 9(2):116-124.
|
[173] |
Zhang L, Chen MZ, Tang WK, Dai JY, Miao L, Zhou XY, et al.A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces.Nat Electron 2021; 4(3):218-227.
|
[174] |
Jafar-Zanjani S, Inampudi S, Mosallaei H.Adaptive genetic algorithm for optical metasurfaces design.Sci Rep 2018; 8:11040.
|
[175] |
Peurifoy J, Shen YC, Jing L, Yang Y, Cano-Renteria F, DeLacy BG, et al.Nanophotonic particle simulation and inverse design using artificial neural networks.Sci Adv 2018; 4(6):eaar4206.
|
[176] |
An SS, Fowler C, Zheng BW, Shalaginov MY, Tang H, Li H, et al.A deep learning approach for objective-driven all-dielectric metasurface design.ACS Photonics 2019; 6(12):3196-3207.
|
[177] |
Zhang Q, Wan X, Liu S, Yin JY, Zhang L, Cui TJ.Shaping electromagnetic waves using software-automatically-designed metasurfaces.Sci Rep 2017; 7:3588.
|
[178] |
Liu C, Yu WM, Ma Q, Li LL, Cui TJ.Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network.Photon Res 2021; 9(4):B159-B167.
|
[179] |
Tseng E, Colburn S, Whitehead J, Huang LC, Baek SH, Majumdar A, et al.Neural nano-optics for high-quality thin lens imaging.Nat Commun 2021; 12:6493.
|
[180] |
Ghosh A, Roth DJ, Nicholls LH, Wardley WP, Zayats AV, Podolskiy VA.Machine learning-based diffractive image analysis with subwavelength resolution.ACS Photonics 2021; 8(5):1448-1456.
|
[181] |
Amenabar I, Poly S, Nuansing W, Hubrich EH, Govyadinov AA, Huth F, et al.Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy.Nat Commun 2013; 4:2890.
|
[182] |
Yao HM, Li M, Jiang LJ.Applying deep learning approach to the far-field subwavelength imaging based on near-field resonant metalens at microwave frequencies.IEEE Access 2019; 7:63801-63808.
|
[183] |
Li LL, Shuang Y, Ma Q, Li HY, Zhao HT, Wei ML, et al.Intelligent metasurface imager and recognizer.Light Sci Appl 2019; 8:97.
|
[184] |
Li WH, Ma Q, Liu C, Zhang YF, Wu XN, Wang JW, et al.Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision.Nat Commun 2023; 14:989.
|
[185] |
Wesemann L, Davis TJ, Roberts A.Meta-optical and thin film devices for all-optical information processing.Appl Phys Rev 2021; 8(3):031309.
|
[186] |
Silva A, Monticone F, Castaldi G, Galdi V, Alu A, Engheta N.Performing mathematical operations with metamaterials.Science 2014; 343(6167):160-163.
|
[187] |
Badloe T, Lee S, Rho J.Computation at the speed of light: metamaterials for all-optical calculations and neural networks.Adv Photonics 2022; 4(6):064002.
|
[188] |
Wen J, Chen L, Yu BB, Nieder JB, Zhuang SL, Zhang DW, et al.All-dielectric synthetic-phase metasurfaces generating practical airy beams.ACS Nano 2021; 15(1):1030-1038.
|
[189] |
Semmlinger M, Zhang M, Tseng ML, Huang TT, Yang J, Tsai DP, et al.Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface.Nano Lett 2019; 19(12):8972-8978.
|
[190] |
Huo PC, Zhang C, Zhu WQ, Liu MZ, Zhang S, Zhang S, et al.Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging.Nano Lett 2020; 20(4):2791-2798.
|
[191] |
Wu ZC, Zhou M, Khoram E, Liu BY, Yu ZF.Neuromorphic metasurface.Photonics Res 2020; 8:46-50.
|
[192] |
Luo XH, Hu YQ, Ou XN, Li X, Lai JJ, Liu N, et al.Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible.Light Sci Appl 2022; 11:158.
|
[193] |
Colburn S, Chu Y, Shilzerman E, Majumdar A.Optical frontend for a convolutions neural network.Appl Opt 2019; 58(12):3179-3186.
|
[194] |
Del Hougne P, Imani MF, Diebold AV, Horstmeyer R, Smith DR.Learned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network.Adv Sci 2020; 7(3):1901913.
|
[195] |
Qu GY, Cai GY, Sha XB, Chen QM, Cheng JP, Zhang Y, et al.All-dielectric metasurface empowered optical–electronic hybrid neural networks.Laser Photonics Rev 2022; 16(10):2100732.
|
[196] |
Hu JT, Mengu D, Tzarouchis DC, Edwards B, Engheta N, Ozcan A.Diffractive optical computing in free space.Nat Commun 2024; 15:1525.
|
[197] |
Gabor D.A new microscopic principle.Nature 1948; 161(4098):777-778.
|
[198] |
Leith EN, Upatnieks J.Reconstructed wavefronts and communication theory.J Opt Soc Am 1962; 52:1123-1130.
|
[199] |
Denisyuk YN.On the reflection of optical properties of an object in a wave field of light scattered by it.Dokl Akad Nauk SSSR 1962; 144:1275-1278.
|
[200] |
Zhang WH, Cao LC, Brady DJ, Zhang H, Cang J, Zhang H, et al.Twin-image-free holography: a compressive sensing approach.Phys Rev Lett 2018; 121(9):093902.
|
[201] |
Zhao Y, Cao LC, Zhang H, Kong DZ, Jin GF.Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.Opt Express 2015; 23(20):25440-25449.
|
[202] |
Zheng HD, Zhou CJ, Shui XH, Yu YJ.Computer-generated full-color phase-only hologram using a multiplane iterative algorithm with dynamic compensation.Appl Opt 2022; 61(5):B262-B270.
|
[203] |
Wang Z, Miccio L, Coppola S, Bianco V, Memmolo P, Tkachenko V, et al.Digital holography as metrology tool at micro–nanoscale for soft matter.Light Adv Manuf 2022; 3:10.
|
[204] |
Li JH, Cao LC, Gu HR, Tan XD, He QS, Jin GF.Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage.Opt Lett 2012; 37(5):936-938.
|
[205] |
Schnars U, Jüptner W.Digital holography: digital hologram recording, numerical reconstruction, and related techniques. Springer-Verlag, Berlin (2005)
|
[206] |
Schnars U, Jüptner WPO.Digital recording and numerical reconstruction of holograms.Meas Sci Technol 2002; 13(9):R85-R.
|
[207] |
Huang ZZ, Memmolo P, Ferraro P, Cao LC.Dual-plane coupled phase retrieval for non-prior holographic imaging.PhotoniX 2022; 3:3.
|
[208] |
Park JH.Recent progress in computer-generated holography for three-dimensional scenes.J Inf Disp 2017; 18(1):1-12.
|
[209] |
Gerhberg R, Saxton W.A practical algorithm for the determination of phase from image and diffraction plane picture.Optik 1972; 35:237-246.
|
[210] |
Zhang JZ, P Négard, Zhong JS, Adesnik H, Waller L.3D computer-generated holography by non-convex optimization.Optica 2017; 4(10):1306-1313.
|
[211] |
Song J, Swisher CL, Im H, Jeong S, Pathania D, Iwamoto Y, et al.Sparsity-based pixel super resolution for lens-free digital in-line holography.Sci Rep 2016; 6:24681.
|
[212] |
Rivenson Y, Wu YC, Ozcan A.Deep learning in holography and coherent imaging.Light Sci Appl 2019; 8:85.
|
[213] |
Liu KX, Wu JC, He ZH, Cao LC.4K-DMDNet: diffraction model-driven network for 4K computer-generated holography.Opto Electron Adv 2023; 6(5):220135.
|
[214] |
Zhu RC, Wang JF, Fu XM, Liu XS, Liu TH, Chu ZT, et al.Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude.ACS Appl Mater Interfaces 2022; 14(42):48303-48310.
|
[215] |
Pitkäaho T, Manninen A, Naughton TJ.Focus prediction in digital holographic microscopy using deep convolutional neural networks.Appl Opt 2019; 58(5):A202-A208.
|
[216] |
Liu TR, de Haan K, Rivenson Y, Wei ZS, Zeng X, Zhang YB, et al.Deep learning-based super-resolution in coherent imaging systems.Sci Rep 2019; 9:3926.
|
[217] |
Yin D, Gu ZZ, Zhang YR, Gu FY, Nie SP, Feng ST, et al.Speckle noise reduction incoherent imaging based on deep learning without clean data.Opt Lasers Eng 2020; 133:106151.
|
[218] |
Wang KQ, Kemao Q, Di JL, Zhao JL.Deep learning spatial phase unwrapping: a comparative review.Adv Photon Nexus 2022; 1:014001.
|
[219] |
O T’Connor, Anand A, Andemariam B, Javidi B.Deep learning-based cell identification and disease diagnosis using spatio–temporal cellular dynamics in compact digital holographic microscopy.Biomed Opt Express 2020; 11(8):4491-4508.
|
[220] |
Horisaki R, Takagi R, Tanida J.Deep-learning-generated holography.Appl Opt 2018; 57(14):3859-3863.
|
[221] |
Zheng H, Hu JB, Zhou CJ, Wang XX.Computing 3D phase-type holograms based on deep learning method.Photonics 2021; 8(7):280.
|
[222] |
Hossein Eybposh M, Caira NW, Atisa M, Chakravarthula P, P NCégard.DeepCGH: 3D computer-generated holography using deep learning.Opt Express 2020; 28(18):26636-26650.
|
[223] |
Peng YF, Choi S, Padmanaban N, Wetzstein G.Neural holography with camera-in-the-loop training.ACM Trans Graph 2020; 39(6):185.
|
[224] |
Peng YF, Choi S, Kim J, Wetzstein G.Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration.Sci Adv 2021; 7(46):eabg5040.
|
[225] |
Wu JC, Liu KX, Sui XM, Cao LC.High-speed computer-generated holography using an autoencoder-based deep neural network.Opt Lett 2021; 46(12):2908-2911.
|
[226] |
Shi L, Li BC, Kim C, Kellnhofer P, Matusik W.Towards real-time photorealistic 3D holography with deep neural networks.Nature 2021; 591(7849):234-239.
|
[227] |
Gao H, Fan XH, Xiong W, Hong MH.Recent advances in optical dynamic meta-holography.Opto Electron Adv 2021; 4(11):210030.
|
[228] |
Hu YQ, Luo XH, Chen YQ, Liu Q, Li X, Wang YS, et al.3D-integrated metasurfaces for full-colour holography.Light Sci Appl 2019; 8:86.
|
[229] |
Zou YJ, Zhu RR, Shen L, Zheng B.Reconfigurable metasurface hologram of dynamic distance via deep learning.Front Mater 2022; 9:907672.
|
[230] |
Kaikhah K, Loochan F.Computer generated holograms for optical neural networks.Appl Intell 2001; 14:145-160.
|
[231] |
Keller PE, Gmitro AF.Design and analysis of fixed planar holographic interconnects for optical neural networks.Appl Opt 1992; 31(26):5517-5526.
|
[232] |
Li HYS, Qiao Y, Psaltis D.Optical network for real-time face recognition.Appl Opt 1993; 32:5026-5035.
|
[233] |
Goi E, Schoenhardt S, Gu M.Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks.Nat Commun 2022; 13:7531.
|
[234] |
Mengu D, Ozcan A.All-optical phase recovery: diffractive computing for quantitative phase imaging.Adv Opt Mater 2022; 10(15):2200281.
|
[235] |
Bai B, Luo Y, Gan T, Hu J, Li Y, Zhao Y, et al.To image, or not to image: class-specific diffractive cameras with all-optical erasure of undesired objects.eLight 2022; 2:14.
|
[236] |
Huang ZB, He YL, Wang PP, Xiong WJ, Wu HS, Liu JM, et al.Orbital angular momentum deep multiplexing holography via an optical diffractive neural network.Opt Express 2022; 30(4):5569-5584.
|
[237] |
Wang TY, Sohoni MM, Wright LG, Stein MM, Ma SY, Onodera T, et al.Image sensing with multilayer nonlinear optical neural networks.Nat Photonics 2023; 17(5):408-415.
|
[238] |
Miscuglio M, Hu ZB, Li SR, George JK, Capanna R, Dalir H, et al.Massively parallel amplitude-only Fourier neural network.Optica 2020; 7(12):1812-1819.
|
[239] |
O JL’Brien.Optical quantum computing.Science 2007; 318(5856):1567-1570.
|
[240] |
Knill E, Laflamme R, Milburn GJ.A scheme for efficient quantum computation with linear optics.Nature 2001; 409(6816):46-52.
|
[241] |
Scala F, Nigro D, Gerace D.Deterministic entangling gates with nonlinear quantum photonic interferometers.2023. arXiv: 2306.05072.
|
[242] |
Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ.Linear optical quantum computing with photonic qubits.Rev Mod Phys 2007; 79(1):135-174.
|
[243] |
Zhong HS, Deng YH, Qin J, Wang H, Chen MC, Peng LC, et al.Phase-programmable Gaussian boson sampling using stimulated squeezed light.Phys Rev Lett 2021; 127(18):180502.
|
[244] |
Madsen LS, Laudenbach F, Askarani MF, Rortais F, Vincent T, Bulmer JFF, et al.Quantum computational advantage with a programmable photonic processor.Nature 2022; 606(7912):75-81.
|
[245] |
Deng YH, Gong SQ, Gu YC, Zhang ZJ, Liu HL, Su H, et al.Solving graph problems using gaussian boson sampling.Phys Rev Lett 2023; 130(19):190601.
|
[246] |
Palmieri AM, Kovlakov E, Bianchi F, Yudin D, Straupe S, Biamonte JD, et al.Experimental neural network enhanced quantum tomography.NPJ Quantum Inf 2020; 6:20.
|
[247] |
Bhusal N, Hong MY, Miller A, Quiroz-Juarez MA, Leon-Montiel RD, You CL, et al.Smart quantum statistical imaging beyond the Abbe–Rayleigh criterion.NPJ Quantum Inf 2022; 8:83.
|
[248] |
Krenn M, Malik M, Fickler R, Lapkiewicz R, Zeilinger A.Automated search for new quantum experiments.Phys Rev Lett 2016; 116(9):090405.
|
[249] |
Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd S.Continuous-variable quantum neural networks.Phys Rev Res 2019; 1(3):033063.
|
[250] |
Steinbrecher GR, Olson JP, Englund D, Carolan J.Quantum optical neural networks.NPJ Quantum Inf 2019; 5(1):60.
|
[251] |
Parthasarathy R, Bhowmik RT.Quantum optical convolutional neural network: a novel image recognition framework for quantum computing.IEEE Access 2021; 9:103337-103346.
|
[252] |
Zuo Y, Cao CF, Cao NP, Lai XY, Zeng B, Du SW.Optical neural network quantum state tomography.Adv Photonics 2022; 4(2):026004.
|
[253] |
Ewaniuk J, Carolan J, Shastri BJ, Rotenberg N.Imperfect quantum photonic neural networks.Adv Quantum Technol. 2023; 6(3):2200125.
|
[254] |
Rebentrost P, Mohseni M, Lloyd S.Quantum support vector machine for big data classification.Phys Rev Lett 2014; 113(13):130503.
|
[255] |
Benedetti M, Lloyd E, Sack S, Fiorentini M.Parameterized quantum circuits as machine learning models.Quantum Sci Technol 2019; 4(4):043001.
|
[256] |
Schuld M, Killoran N.Is quantum advantage the right goal for quantum machine learning?.PRX Quantum 2022; 3(3):030101.
|
[257] |
Wright LG, McMahon PL.The capacity of quantum neural networks.In: Proceedings of the 2020 Conference on Lasers and Electro-Optics (CLEO); 2020 May 10–15; online. Washington, DC: Optica Publishing Group; 2020. p. JM4G.5.
|
[258] |
Wang JW, Paesani S, Ding YH, Santagati R, Skrzypczyk P, Salavrakos A, et al.Multidimensional quantum entanglement with large-scale integrated optics.Science 2018; 360(6386):285-291.
|
[259] |
Politi A, Cryan MJ, Rarity JG, Yu SY, O JL’Brien.Silica-on-silicon waveguide quantum circuits.Science 2008; 320(5876):646-649.
|
[260] |
Arrazola JM, Bergholm V, Brádler K, Bromley TR, Collins MJ, Dhand I, et al.Quantum circuits with many photons on a programmable nanophotonic chip.Nature 2021; 591(7848):54-60.
|
[261] |
Bao JM, Fu ZR, Pramanik T, Mao J, Chi YL, Cao YK, et al.Very-large-scale integrated quantum graph photonics.Nat Photonics 2023; 17(7):573-581.
|
[262] |
Elshaari AW, Pernice W, Srinivasan K, Benson O, Zwiller V.Hybrid integrated quantum photonic circuits.Nat Photonics 2020; 14(5):285-298.
|
[263] |
Wang JW, Paesani S, Santagati R, Knauer S, Gentile AA, Wiebe N, et al.Experimental quantum Hamiltonian learning.Nat Phys 2017; 13(6):551-555.
|
[264] |
Ren HR, Shao W, Li Y, Salim F, Gu M.Three-dimensional vectorial holography based on machine learning inverse design.Sci Adv 2020; 6(16):eaaz4261.
|
[265] |
Wang D, Li ZS, Zheng Y, Zhao YR, Liu C, Xu JB, et al.Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network.Light Sci Appl 2024; 13:62.
|
[266] |
I Cşıl, Mengu D, Zhao YF, Tabassum A, Li JX, Luo Y, et al.Super-resolution image display using diffractive decoders.Sci Adv 2022; 8(48):eadd3433.
|
[267] |
Sakib Rahman MS, Ozcan A.Computer-free, all-optical reconstruction of holograms using diffractive networks.ACS Photonics 2021; 8(11):3375-3384.
|
[268] |
Rivenson Y, Wang HD, Wei ZS, de Haan K, Zhang YB, Wu YC, et al.Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning.Nat Biomed Eng 2019; 3(6):466-477.
|
[269] |
Mahecic D, Stepp WL, Zhang C, Griffie J, Weigert M, Manley S.Event-driven acquisition for content-enriched microscopy.Nat Methods 2022; 19(10):1262-1267.
|
[270] |
Yuan SF, Ma C, Fetaya E, Mueller T, Naveh D, Zhang F, et al.Geometric deep optical sensing.Science 2023; 379(6637):eade1220.
|
[271] |
Ashtiani F, Geers AJ, Aflatouni F.An on-chip photonic deep neural network for image classification.Nature 2022; 606(7914):501-506.
|
[272] |
Zhang QH, Gamekkanda JC, Pandit A, Tang WL, Papageorgiou C, Mitchell C, et al.Extracting particle size distribution from laser speckle with a physics-enhanced autocorrelation-based estimator (PEACE).Nat Commun 2023; 14:1159.
|
[273] |
Yan QQ, Deng QH, Zhang J, Zhu Y, Yin K, Li T, et al.Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers.Photon Res 2021; 9(8):1493-1501.
|
[274] |
Pan XS, Zuo H, Bai H, Wu ZX, Cui XQ.Real-time wavefront correction using diffractive optical networks.Opt Express 2023; 31(2):1067-1078.
|
[275] |
Pai S, Sun ZH, Hughes TW, Park T, Bartlett B, Williamson IAD, et al.Experimentally realized in situ backpropagation for deep learning in photonic neural networks.Science 2023; 380(6643):398-404.
|
[276] |
Passalis N, Mourgias-Alexandris G, Pleros N, Tefas A.Adaptive initialization for recurrent photonic networks using sigmoidal activations.In: Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS); 2020 Oct 12–14; Seville, Spain. New York City: IEEE; 2020. p. 1–5.
|
[277] |
Passalis N, Mourgias-Alexandris G, Tsakyridis A, Pleros N, Tefas A.Variance preserving initialization for training deep neuromorphic photonic networks with sinusoidal activations.In: Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2019 May 12–17; Brighton, UK. New York City: IEEE; 2019. p. 1483–7.
|
[278] |
George J, Amin R, Mehrabian A, Khurgin J, El-Ghazawi T, Prucnal PR, et al.Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks.In: Proceedings of the Advanced Photonics 2018; 2018 Jul 2–5; Zurich, Switzerland. Washington, DC: Optica Publishing Group; 2018. p. SpW4G.3.
|
[279] |
Xu DY, Xu WH, Yang Q, Zhang WS, Wen SC, Luo HL.All-optical object identification and three-dimensional reconstruction based on optical computing metasurface.Opto Electron Adv 2023; 6(12):230120.
|
[280] |
Yang YQ, Forbes A, Cao LC.A review of liquid crystal spatial light modulators: devices and applications.Opto-Electron Sci 2023; 2(8):230026.
|
[281] |
Liao K, Chen Y, Yu ZC, Hu XY, Wang XY, Lu CC, et al.All-optical computing based on convolutional neural networks.Opto Electron Adv 2021; 4(11):200060.
|