[1] |
S.J. Altschuler, L.F. Wu. Cellular heterogeneity: do differences make a difference?. Cell, 141 (4) (2010), pp. 559-563.
|
[2] |
M. Kærn, T.C. Elston, W.J. Blake, J.J. Collins. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet, 6 (6) (2005), pp. 451-464.
|
[3] |
E. Shapiro, T. Biezuner, S. Linnarsson. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet, 14 (9) (2013), pp. 618-630.
|
[4] |
C. Gawad, W. Koh, S.R. Quake. Single-cell genome sequencing: current state of the science. Nat Rev Genet, 17 (3) (2016), pp. 175-188.
|
[5] |
S. Lin, Y. Liu, M. Zhang, X. Xu, Y. Chen, H. Zhang, et al. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. Lab Chip, 21 (20) (2021), pp. 3829-3849.
|
[6] |
B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, et al. Global quantification of mammalian gene expression control. Nature, 473 (7347) (2011), pp. 337-342.
|
[7] |
Y. Liu, A. Beyer, R. Aebersold. On the dependency of cellular protein levels on mRNA abundance. Cell, 165 (3) (2016), pp. 535-550.
|
[8] |
A. Doerr. Single-cell proteomics. Nat Methods, 16 (1) (2019), p. 20.
|
[9] |
M. Labib, S.O. Kelley. Single-cell analysis targeting the proteome. Nat Rev Chem, 4 (3) (2020), pp. 143-158.
|
[10] |
D.R. Bandura, V.I. Baranov, O.I. Ornatsky, A. Antonov, R. Kinach, X. Lou, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem, 81 (16) (2009), pp. 6813-6822.
|
[11] |
C. Giesen, H.A.O. Wang, D. Schapiro, N. Zivanovic, A. Jacobs, B. Hattendorf, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods, 11 (4) (2014), pp. 417-422.
|
[12] |
Q. Shi, L. Qin, W. Wei, F. Geng, R. Fan, Y. Shik Shin, et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci USA, 109 (2) (2012), pp. 419-424.
|
[13] |
N. Kravchenko-Balasha, Y.S. Shin, A. Sutherland, R.D. Levine, J.R. Heath. Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement. Proc Natl Acad Sci USA, 113 (20) (2016), pp. 5520-5525.
|
[14] |
A.J. Hughes, D.P. Spelke, Z. Xu, C.C. Kang, D.V. Schaffer, A.E. Herr. Single-cell western blotting. Nat Methods, 11 (7) (2014), pp. 749-755.
|
[15] |
C.C. Kang, J.M. Lin, Z. Xu, S. Kumar, A.E. Herr. Single-cell western blotting after whole-cell imaging to assess cancer chemotherapeutic response. Anal Chem, 86 (20) (2014), pp. 10429-10436.
|
[16] |
C.C. Kang, K.A. Yamauchi, J. Vlassakis, E. Sinkala, T.A. Duncombe, A.E. Herr. Single cell-resolution western blotting. Nat Protoc, 11 (8) (2016), pp. 1508-1530.
|
[17] |
T.E. Angel, U.K. Aryal, S.M. Hengel, E.S. Baker, R.T. Kelly, E.W. Robinson, et al. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev, 41 (10) (2012), pp. 3912-3928.
|
[18] |
T.J. Comi, T.D. Do, S.S. Rubakhin, J.V. Sweedler. Categorizing cells on the basis of their chemical profiles: progress in single-cell mass spectrometry. J Am Chem Soc, 139 (11) (2017), pp. 3920-3929.
|
[19] |
R.T. Kelly. Single-cell proteomics: progress and prospects. Mol Cell Proteomics, 19 (11) (2020), pp. 1739-1748.
|
[20] |
S.T. Gebreyesus, G. Muneer, C.C. Huang, A.A. Siyal, M. Anand, Y.J. Chen, et al. Recent advances in microfluidics for single-cell functional proteomics. Lab Chip, 23 (7) (2023), pp. 1726-1751.
|
[21] |
X. Xu, Q. Zhang, M. Li, S. Lin, S. Liang, L. Cai, et al. Microfluidic single-cell multiomics analysis. View, 4 (1) (2023), Article 20220034.
|
[22] |
S.M. Scott, Z. Ali. Fabrication methods for microfluidic devices: an overview. Micromachines, 12 (3) (2021), p. 319.
|
[23] |
G.M. Whitesides. The origins and the future of microfluidics. Nature, 442 (7101) (2006), pp. 368-373.
|
[24] |
T. Moragues, D. Arguijo, T. Beneyton, C. Modavi, K. Simutis, A.R. Abate, et al. Droplet-based microfluidics. Nat Rev Methods Primers, 3 (1) (2023), p. 32.
|
[25] |
L.R. Shang, Y. Cheng, Y.J. Zhao. Emerging droplet microfluidics. Chem Rev, 117 (12) (2017), pp. 7964-8040.
|
[26] |
Y. Ding, P.D. Howes, A.J. deMello. Recent advances in droplet microfluidics. Anal Chem, 92 (1) (2020), pp. 132-149.
|
[27] |
D. Gao, H. Liu, Y. Jiang, J.M. Lin. Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab Chip, 13 (17) (2013), pp. 3309-3322.
|
[28] |
W. Zhang, Q. Zhang, J.M. Lin. Cell analysis on microfluidics combined with mass spectrometry. Anal Sci, 37 (2) (2021), pp. 249-260.
|
[29] |
P. Zhu, L. Wang. Passive and active droplet generation with microfluidics: a review. Lab Chip, 17 (1) (2017), pp. 34-75.
|
[30] |
B.X. Li, X. Ma, J.H. Cheng, T. Tian, J. Guo, Y. Wang, et al. Droplets microfluidics platform—a tool for single cell research. Front Bioeng Biotechnol, 11 (2023), Article 1121870.
|
[31] |
O. Caro-Pérez, J. Casals-Terré, M.B. Roncero. Materials and manufacturing methods for EWOD devices: current status and sustainability challenges. Macromol Mater Eng, 308 (1) (2023), Article 2200193.
|
[32] |
T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett, 86 (18) (2001), pp. 4163-4166.
|
[33] |
J. Xu, S. Li, J. Tan, Y. Wang, G. Luo. Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE J, 52 (9) (2006), pp. 3005-3010.
|
[34] |
M.L.J. Steegmans, K.G.P.H. Schroën, R.M. Boom. Characterization of emulsification at flat microchannel Y junctions. Langmuir, 25 (6) (2009), pp. 3396-3401.
|
[35] |
P.B. Umbanhowar, V. Prasad, D.A. Weitz. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir, 16 (2) (2000), pp. 347-351.
|
[36] |
S.L. Anna, N. Bontoux, H.A. Stone. Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett, 82 (3) (2003), pp. 364-366.
|
[37] |
Y. He, Z. Lu, H. Fan, T. Zhang. A photofabricated honeycomb micropillar array for loss-free trapping of microfluidic droplets and application to digital PCR. Lab Chip, 21 (20) (2021), pp. 3933-3941.
|
[38] |
J.H. Xu, G.S. Luo, G.G. Chen, J.D. Wang. Experimental and theoretical approaches on droplet formation from a micrometer screen hole. J Membr Sci, 266 (1-2) (2005), pp. 121-131.
|
[39] |
Y. Zhu, Y.X. Zhang, L.F. Cai, Q. Fang. Sequential operation droplet array: an automated microfluidic platform for picoliter-scale liquid handling, analysis, and screening. Anal Chem, 85 (14) (2013), pp. 6723-6731.
|
[40] |
Y. Zhu, P.D. Piehowski, R. Zhao, J. Chen, Y. Shen, R.J. Moore, et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells. Nat Commun, 9 (1) (2018), p. 882.
|
[41] |
M.G. Pollack, A.D. Shenderov, R.B. Fair. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip, 2 (2) (2002), pp. 96-101.
|
[42] |
S.K. Cho, H. Moon, C.J. Kim. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst, 12 (1) (2003), pp. 70-80.
|
[43] |
U.C. Yi, C.J. Kim. Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J Micromech Microeng, 16 (10) (2006), pp. 2053-2059.
|
[44] |
D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, et al. Electric control of droplets in microfluidic devices. Angew Chem Int Ed Engl, 45 (16) (2006), pp. 2556-2560.
|
[45] |
S.H. Tan, B. Semin, J.C. Baret. Microfluidic flow-focusing in ac electric fields. Lab Chip, 14 (6) (2014), pp. 1099-1106.
|
[46] |
N.T. Nguyen, T.H. Ting, Y.F. Yap, T.N. Wong, J.C.K. Chai, W.L. Ong, et al. Thermally mediated droplet formation in microchannels. Appl Phys Lett, 91 (2007), Article 084102.
|
[47] |
S.Y. Park, T.H. Wu, Y. Chen, M.A. Teitell, P.Y. Chiou. High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip, 11 (6) (2011), pp. 1010-1012.
|
[48] |
J. Liu, S.H. Tan, Y.F. Yap, M.Y. Ng, N.T. Nguyen. Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluidics, 11 (2) (2011), pp. 177-187.
|
[49] |
C.T. Chen, G.B. Lee. Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip. J Microelectromech Syst, 15 (6) (2006), pp. 1492-1498.
|
[50] |
A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz. Monodisperse double emulsions generated from a microcapillary device. Science, 308 (5721) (2005), pp. 537-541.
|
[51] |
R. Sanka, J. Lippai, D. Samarasekera, S. Nemsick, D. Densmore.3DμF-interactive design environment for continuous flow microfluidic devices. Sci Rep, 9 (1) (2019), p. 9166.
|
[52] |
X. Niu, F. Gielen, J.B. Edel, A.J. deMello. A microdroplet dilutor for high-throughput screening. Nat Chem, 3 (6) (2011), pp. 437-442.
|
[53] |
H. Song, J.D. Tice, R.F. Ismagilov. A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed, 42 (7) (2003), pp. 768-772.
|
[54] |
X. Yu, W. Ruan, F. Lin, W. Qian, Y. Zou, Y. Liu, et al. Digital microfluidics-based digital counting of single-cell copy number variation (dd-scCNV Seq). Proc Natl Acad Sci USA, 120 (20) (2023), Article e2221934120.
|
[55] |
Q. Ruan, W. Ruan, X. Lin, Y. Wang, F. Zou, L. Zhou, et al. Digital-WGS: automated, highly efficient whole-genome sequencing of single cells by digital microfluidics. Sci Adv, 6 (50) (2020), Article eabd6454.
|
[56] |
C. Wu, R. Chen, Y. Liu, Z. Yu, Y. Jiang, X. Cheng. A planar dielectrophoresis-based chip for high-throughput cell pairing. Lab Chip, 17 (23) (2017), pp. 4008-4014.
|
[57] |
Y. He, Z. Lu, K. Liu, L. Wang, Q. Xu, H. Fan, et al. Photofabricated channel-digital microfluidics (pCDMF): a promising lab-on-a-chip platform for fully integrated digital PCR. Sens Actuators B Chem, 399 (2024), Article 134851.
|
[58] |
E. Samiei, M. Tabrizian, M. Hoorfar. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip, 16 (13) (2016), pp. 2376-2396.
|
[59] |
S.T. Seiler, G.L. Mantalas, J. Selberg, S. Cordero, S. Torres-Montoya, P.V. Baudin, et al. Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids. Sci Rep, 12 (1) (2022), p. 20173.
|
[60] |
L. Pang, J. Ding, X.X. Liu, Z.X. Kou, L.L. Guo, X. Xu, et al. Microfluidics-based single-vell research for intercellular interaction. Front Cell Dev Biol, 9 (2021), Article 680307.
|
[61] |
S. Köster, F.E. Angilè, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip, 8 (7) (2008), pp. 1110-1115.
|
[62] |
L. Mazutis, J. Gilbert, W.L. Ung, D.A. Weitz, A.D. Griffiths, J.A. Heyman. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc, 8 (5) (2013), pp. 870-891.
|
[63] |
Y. Nakagawa, S. Ohnuki, N. Kondo, K. Itto-Nakama, F. Ghanegolmohammadi, A. Isozaki, et al. Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab Chip, 21 (19) (2021), pp. 3793-3803.
|
[64] |
Z. Zhu, C.J. Yang. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc Chem Res, 50 (1) (2017), pp. 22-31.
|
[65] |
B.M. Tiemeijer, M.W.D. Sweep, J.J.F. Sleeboom, K.J. Steps, J.F. van Sprang, P. De Almeida, et al. Probing single-cell macrophage polarization and heterogeneity using thermo-reversible hydrogels in droplet-based microfluidics. Front Bioeng Biotechnol, 9 (2021), Article 715408.
|
[66] |
D.G. Lin, X. Chen, Y. Liu, Z. Lin, Y.Z. Luo, M.P. Fu, et al. Microgel single-cell culture arrays on a microfluidic chip for selective expansion and recovery of colorectal cancer stem cells. Anal Chem, 93 (37) (2021), pp. 12628-12638.
|
[67] |
E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA, 106 (34) (2009), pp. 14195-14200.
|
[68] |
B.L. Wang, A. Ghaderi, H. Zhou, J. Agresti, D.A. Weitz, G.R. Fink, et al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol, 32 (5) (2014), pp. 473-478.
|
[69] |
T. Khajvand, P. Huang, L. Li, M. Zhang, F. Zhu, X. Xu, et al. Interfacing droplet microfluidics with antibody barcodes for multiplexed single-cell protein secretion profiling. Lab Chip, 21 (24) (2021), pp. 4823-4830.
|
[70] |
S. Hu, J. Ye, S. Shi, C. Yang, K. Jin, C. Hu, et al. Large-area electronics-enabled high-resolution digital microfluidics for parallel single-cell manipulation. Anal Chem, 95 (17) (2023), pp. 6905-6914.
|
[71] |
B. Hadwen, G.R. Broder, D. Morganti, A. Jacobs, C. Brown, J.R. Hector, et al. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays. Lab Chip, 12 (18) (2012), pp. 3305-3313.
|
[72] |
S. Anderson, B. Hadwen, C. Brown. Thin-film-transistor digital microfluidics for high value in vitro diagnostics at the point of need. Lab Chip, 21 (5) (2021), pp. 962-975.
|
[73] |
L. Huang, Y. Feng, F. Liang, P. Zhao, W. Wang. Dual-fiber microfluidic chip for multimodal manipulation of single cells. Biomicrofluidics, 15 (1) (2021), Article 014106.
|
[74] |
K. Samlali, F. Ahmadi, A.B.V. Quach, G. Soffer, S.C.C. Shih. One cell, one drop, one click: hybrid microfluidics for mammalian single cell isolation. Small, 16 (34) (2020), Article 2002400.
|
[75] |
T. Jing, R. Ramji, M.E. Warkiani, J. Han, C.T. Lim, C.H. Chen. Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens Bioelectron, 66 (2015), pp. 19-23.
|
[76] |
S. Mao, W. Zhang, Q. Huang, M. Khan, H. Li, K. Uchiyama, et al. In situ scatheless cell detachment reveals correlation between adhesion strength and viability at single-cell resolution. Angew Chem Int Ed, 57 (1) (2018), pp. 236-240.
|
[77] |
M.J. Jebrail, A.R. Wheeler. Digital microfluidic method for protein extraction by precipitation. Anal Chem, 81 (1) (2009), pp. 330-335.
|
[78] |
H. Yang, J.M. Mudrik, M.J. Jebrail, A.R. Wheeler. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction. Anal Chem, 83 (10) (2011), pp. 3824-3830.
|
[79] |
X. Xu, M. Zhang, X. Zhang, Y. Liu, L. Cai, Q. Zhang, et al. Decoding expression dynamics of protein and transcriptome at the single-cell level in paired picoliter chambers. Anal Chem, 94 (23) (2022), pp. 8164-8173.
|
[80] |
N.A. Mousa, M.J. Jebrail, H. Yang, M. Abdelgawad, P. Metalnikov, J. Chen, et al. Droplet-scale estrogen assays in breast tissue, blood, and serum. Sci Transl Med, 1 (1) (2009), Article 1ra2.
|
[81] |
W. Zhang, N. Li, L. Lin, Q. Huang, K. Uchiyama, J.M. Lin. Concentrating single cells in picoliter droplets for phospholipid profiling on a microfluidic system. Small, 16 (9) (2020), Article 1903402.
|
[82] |
Z. Dong, Q. Fang. Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. Trac Trends Analyt Chem, 124 (2020), Article 115812.
|
[83] |
Q. Lou, Y. Ma, S.P. Zhao, G.S. Du, Q. Fang. A flexible and cost-effective manual droplet operation platform for miniaturized cell assays and single cell analysis. Talanta, 224 (2021), Article 121874.
|
[84] |
V. Marx. A dream of single-cell proteomics. Nat Methods, 16 (9) (2019), pp. 809-812.
|
[85] |
Q. Chen, G. Yan, M. Gao, X. Zhang. Ultrasensitive proteome profiling for 100 living cells by direct cell injection, online digestion and nano-LC-MS/MS analysis. Anal Chem, 87 (13) (2015), pp. 6674-6680.
|
[86] |
C.S. Hughes, S. Moggridge, T. Müller, P.H. Sorensen, G.B. Morin, J. Krijgsveld. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc, 14 (1) (2019), pp. 68-85.
|
[87] |
Z. Zhang, K.M. Dubiak, P.W. Huber, N.J. Dovichi. Miniaturized filter-aided sample preparation (micro-FASP) method for high throughput, ultrasensitive proteomics sample preparation reveals proteome asymmetry in xenopus laevis embryos. Anal Chem, 92 (7) (2020), pp. 5554-5560.
|
[88] |
H. Zhao, Y. Chen, H. Li, Y. Zhang, W. Zhang, W. Qin. An angled-shape tip-based strategy for highly sensitive proteomic profiling of a low number of cells. Anal Methods, 15 (9) (2023), pp. 1215-1222.
|
[89] |
W. Chen, S. Wang, S. Adhikari, Z. Deng, L. Wang, L. Chen, et al. Simple and integrated spintip-based technology applied for deep proteome profiling. Anal Chem, 88 (9) (2016), pp. 4864-4871.
|
[90] |
Y. Liang, H. Acor, M.A. McCown, A.J. Nwosu, H. Boekweg, N.B. Axtell, et al. Fully automated sample processing and analysis workflow for low-input proteome profiling. Anal Chem, 93 (3) (2021), pp. 1658-1666.
|
[91] |
T. Masuda, Y. Inamori, A. Furukawa, M. Yamahiro, K. Momosaki, C.H. Chang, et al. Water droplet-in-oil digestion method for single-cell proteomics. Anal Chem, 94 (29) (2022), pp. 10329-10336.
|
[92] |
Y. Zhu, R. Zhao, P.D. Piehowski, R.J. Moore, S. Lim, V.J. Orphan, et al. Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. Int J Mass Spectrom, 427 (2018), pp. 4-10.
|
[93] |
E.S. Baker, K.E. Burnum-Johnson, Y.M. Ibrahim, D.J. Orton, M.E. Monroe, R.T. Kelly, et al. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics, 15 (16) (2015), pp. 2766-2776.
|
[94] |
C.F. Tsai, R. Zhao, S.M. Williams, R.J. Moore, K. Schultz, W.B. Chrisler, et al. An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics. Mol Cell Proteomics, 19 (5) (2020), pp. 828-838.
|
[95] |
A.D. Brunner, M. Thielert, C. Vasilopoulou, C. Ammar, F. Coscia, A. Mund, et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol Syst Biol, 18 (3) (2022), p. e10798.
|
[96] |
D.B. Bekker-Jensen, A. Martinez-Val, S. Steigerwald, P. Ruther, K.L. Fort, T.N. Arrey, et al. A compact quadrupole-orbitrap mass spectrometer with faims interface improves proteome coverage in short LC gradients. Mol Cell Proteomics, 19 (4) (2020), pp. 716-729.
|
[97] |
W. Fang, Z.K. Du, L.L. Kong, B. Fu, G.B. Wang, Y.J. Zhang, et al. A rapid and sensitive single-cell proteomic method based on fast liquid-chromatography separation, retention time prediction and MS1-only acquisition. Anal Chim Acta, 1251 (2023), Article 341038.
|
[98] |
B. Budnik, E. Levy, G. Harmange, N. Slavov. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol, 19 (1) (2018), p. 161.
|
[99] |
N. Slavov. Increasing proteomics throughput. Nat Biotechnol, 39 (7) (2021), pp. 809-810.
|
[100] |
A.A. Petelski, E. Emmott, A. Leduc, R.G. Huffman, H. Specht, D.H. Perlman, et al. Multiplexed single-cell proteomics using SCoPE2. Nat Protoc, 16 (12) (2021), pp. 5398-5425.
|
[101] |
T.K. Cheung, C.Y. Lee, F.P. Bayer, A. McCoy, B. Kuster, C.M. Rose. Defining the carrier proteome limit for single-cell proteomics. Nat Methods, 18 (1) (2021), pp. 76-83.
|
[102] |
L.L. Kong, F.Z. Li, W. Fang, Z.K. Du, G.B. Wang, Y.J. Zhang, et al. Sensitive N-glycopeptide profiling of single and rare cells using an isobaric labeling strategy without enrichment. Anal Chem, 95 (30) (2023), pp. 11326-11334.
|
[103] |
Y. Zhu, G. Clair, W.B. Chrisler, Y. Shen, R. Zhao, A.K. Shukla, et al. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive NanoLC-MS. Angew Chem Int Ed, 130 (38) (2018), pp. 12550-12554.
|
[104] |
M. Dou, G. Clair, C.F. Tsai, K. Xu, W.B. Chrisler, R.L. Sontag, et al. High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform. Anal Chem, 91 (20) (2019), pp. 13119-13127.
|
[105] |
P.D. Piehowski, Y. Zhu, L.M. Bramer, K.G. Stratton, R. Zhao, D.J. Orton, et al. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat Commun, 11 (1) (2020), p. 8.
|
[106] |
J. Woo, S.M. Williams, L.M. Markillie, S. Feng, C.F. Tsai, V. Aguilera-Vazquez, et al. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nat Commun, 12 (1) (2021), p. 6246.
|
[107] |
K.G.I. Webber, T. Truong, S.M. Johnston, S.E. Zapata, Y. Liang, J.M. Davis, et al. Label-free profiling of up to 200 single-cell proteomes per day using a dual-column nanoflow liquid chromatography platform. Anal Chem, 94 (15) (2022), pp. 6017-6025.
|
[108] |
Z.Y. Li, M. Huang, X.K. Wang, Y. Zhu, J.S. Li, C.C.L. Wong, et al. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis. Anal Chem, 90 (8) (2018), pp. 5430-5438.
|
[109] |
Y. Li, H. Li, Y. Xie, S. Chen, R. Qin, H. Dong, et al. An integrated strategy for mass spectrometry-based multiomics analysis of single cells. Anal Chem, 93 (42) (2021), pp. 14059-14067.
|
[110] |
M.J. Jebrail, A.H.C. Ng, V. Rai, R. Hili, A.K. Yudin, A.R. Wheeler. Synchronized synthesis of peptide-based macrocycles by digital microfluidics. Angew Chem Int Ed, 49 (46) (2010), pp. 8625-8629.
|
[111] |
V.N. Luk, A.R. Wheeler. A digital microfluidic approach to proteomic sample processing. Anal Chem, 81 (11) (2009), pp. 4524-4530.
|
[112] |
N.M. Lafrenière, J.M. Mudrik, A.H.C. Ng, B. Seale, N. Spooner, A.R. Wheeler. Attractive design: an elution solvent optimization platform for magnetic-bead-based fractionation using digital microfluidics and design of experiments. Anal Chem, 87 (7) (2015), pp. 3902-3910.
|
[113] |
M.J. Jebrail, H. Yang, J.M. Mudrik, N.M. Lafrenière, C. McRoberts, O.Y. Al-Dirbashi, et al. A digital microfluidic method for dried blood spot analysis. Lab Chip, 11 (19) (2011), pp. 3218-3224.
|
[114] |
R. Fobel, C. Fobel, A.R. Wheeler. DropBot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl Phys Lett, 102 (19) (2013), Article 193513.
|
[115] |
S.C.C. Shih, H. Yang, M.J. Jebrail, R. Fobel, N. McIntosh, O.Y. Al-Dirbashi, et al. Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal Chem, 84 (8) (2012), pp. 3731-3738.
|
[116] |
A.E. Kirby, A.R. Wheeler. Digital microfluidics: an emerging sample preparation platform for mass spectrometry. Anal Chem, 85 (13) (2013), pp. 6178-6184.
|
[117] |
J. Leipert, A. Tholey. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants. Lab Chip, 19 (20) (2019), pp. 3490-3498.
|
[118] |
C. Chan, J. Peng, V. Rajesh, E.Y. Scott, A.A. Sklavounos, M. Faiz, et al. Digital microfluidics for microproteomic analysis of minute mammalian tissue samples enabled by a photocleavable surfactant. J Proteome Res, 22 (10) (2023), pp. 3242-3253.
|
[119] |
J. Leipert, M.K. Steinbach, A. Tholey. Isobaric peptide labeling on digital microfluidics for quantitative low cell number proteomics. Anal Chem, 93 (15) (2021), pp. 6278-6286.
|
[120] |
M.K. Steinbach, J. Leipert, C. Blurton, M. Leippe, A. Tholey. Digital microfluidics supported microproteomics for quantitative proteome analysis of single caenorhabditis elegans nematodes. J Proteome Res, 21 (8) (2022), pp. 1986-1996.
|
[121] |
J. Leipert, P.T. Kaulich, M.K. Steinbach, B. Steer, K. Winkels, C. Blurton, et al. Digital microfluidics and magnetic bead-based intact proteoform elution for quantitative top-down nanoproteomics of single C. elegans nematodes. Angew Chem Int Ed, 62 (28) (2023), Article e202301969.
|
[122] |
J. Lamanna, E.Y. Scott, H.S. Edwards, M.D. Chamberlain, M.D. Dryden, J. Peng, et al. Digital microfluidic isolation of single cells for-omics. Nat Commun, 11 (1) (2020), p. 5632.
|
[123] |
Z. Yang, K. Jin, Y. Chen, Q. Liu, H. Chen, S. Hu, et al. AM-DMF-SCP: integrated single-cell proteomics analysis on an active matrix digital microfluidic chip. JACS Au, 4 (5) (2024), pp. 1811-1823.
|
[124] |
J. Peng, C. Chan, S. Zhang, A.A. Sklavounos, M.E. Olson, E.Y. Scott, et al. All-in-one digital microfluidics pipeline for proteomic sample preparation and analysis. Chem Sci, 14 (11) (2023), pp. 2887-2900.
|
[125] |
A. Das, C. Weise, M. Polack, R.D. Urban, B. Krafft, S. Hasan, et al. On-the-fly mass spectrometry in digital microfluidics enabled by a microspray hole: toward multidimensional reaction monitoring in automated synthesis platforms. J Am Chem Soc, 144 (23) (2022), pp. 10353-10360.
|
[126] |
S.M. Williams, A.V. Liyu, C.F. Tsai, R.J. Moore, D.J. Orton, W.B. Chrisler, et al. Automated coupling of nanodroplet sample preparation with liquid chromatography-mass spectrometry for high-throughput single-cell proteomics. Anal Chem, 92 (15) (2020), pp. 10588-10596.
|
[127] |
C. Ctortecka, D. Hartlmayr, A. Seth, S. Mendjan, G. Tourniaire, N.D. Udeshi, et al. An automated nanowell-array workflow for quantitative multiplexed single-cell proteomics sample preparation at high sensitivity. Mol Cell Proteomics, 22 (12) (2023), Article 100665.
|
[128] |
S.T. Gebreyesus, A.A. Siyal, R.B. Kitata, E.S.W. Chen, B. Enkhbayar, T. Angata, et al. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry. Nat Commun, 13 (1) (2022), p. 37.
|
[129] |
A. Mund, A.D. Brunner, M. Mann. Unbiased spatial proteomics with single-cell resolution in tissues. Mol Cell, 82 (12) (2022), pp. 2335-2349.
|
[130] |
C. Stutzmann, J. Peng, Z. Wu, C. Savoie, I. Sirois, P. Thibault, et al. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. Cell Rep Methods, 3 (6) (2023), Article 100511.
|
[131] |
R. Su, L.H. Fan, C. Cao, L. Wang, Z. Du, Z. Cai, et al. Global profiling of RNA-binding protein target sites by LACE-seq. Nat Cell Biol, 23 (6) (2021), pp. 664-675.
|
[132] |
V. Espina, M. Heiby, M. Pierobon, L.A. Liotta. Laser capture microdissection technology. Expert Rev Mol Diagn, 7 (5) (2007), pp. 647-657.
|
[133] |
Y. Zhu, M. Dou, P.D. Piehowski, Y. Liang, F. Wang, R.K. Chu, et al. Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to nanodroplets. Mol Cell Proteomics, 17 (9) (2018), pp. 1864-1874.
|
[134] |
Y. Kwon, P.D. Piehowski, R. Zhao, R.L. Sontag, R.J. Moore, K.E. Burnum-Johnson, et al. Hanging drop sample preparation improves sensitivity of spatial proteomics. Lab Chip, 22 (15) (2022), pp. 2869-2877.
|
[135] |
K. Xu, Y. Liang, P.D. Piehowski, M. Dou, K.C. Schwarz, R. Zhao, et al. Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells. Anal Bioanal Chem, 411 (19) (2019), pp. 4587-4596.
|
[136] |
Y. Liang, Y. Zhu, M. Dou, K. Xu, R.K. Chu, W.B. Chrisler, et al. Spatially resolved proteome profiling of < 200 cells from tomato fruit pericarp by integrating laser-capture microdissection with nanodroplet sample preparation. Anal Chem, 90 (18) (2018), pp. 11106-11114.
|
[137] |
R. Xu, J. Tang, Q. Deng, W. He, X. Sun, L. Xia, et al. Spatial-resolution cell type proteome profiling of cancer tissue by fully integrated proteomics technology. Anal Chem, 90 (9) (2018), pp. 5879-5886.
|
[138] |
R. Satija, J.A. Farrell, D. Gennert, A.F. Schier, A. Regev. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol, 33 (5) (2015), pp. 495-502.
|
[139] |
M. Dolatmoradi, L.Z. Samarah, A. Vertes. Single-cell metabolomics by mass spectrometry: opportunities and challenges. Anal Sens, 2 (1) (2022), Article e202100032.
|
[140] |
C. Seydel. Single-cell metabolomics hits its stride. Nat Methods, 18 (12) (2021), pp. 1452-1456.
|
[141] |
X. Li, H.S. Pak, F. Huber, J. Michaux, M. Taillandier-Coindard, E.R. Altimiras, et al. A microfluidics-enabled automated workflow of sample preparation for MS-based immunopeptidomics. Cell Rep Methods, 3 (6) (2023), Article 100479.
|
[142] |
S. Feola, M. Haapala, K. Peltonen, C. Capasso, B. Martins, G. Antignani, et al. PeptiCHIP: a microfluidic platform for tumor antigen landscape identification. ACS Nano, 15 (10) (2021), pp. 15992-16010.
|
[143] |
P. Skowronek, M. Thielert, E. Voytik, M.C. Tanzer, F.M. Hansen, S. Willems, et al. Rapid and in-depth coverage of the (phospho-) proteome with deep libraries and optimal window design for dia-PASEF. Mol Cell Proteomics, 21 (9) (2022), Article 100279.
|
[144] |
C.B. Messner, V. Demichev, N. Bloomfield, J.S.L. Yu, M. White, M. Kreidl, et al. Ultra-fast proteomics with scanning SWATH. Nat Biotechnol, 39 (7) (2021), pp. 846-854.
|
[145] |
Z. Guo, Y. Zhao, Z. Jin, Y. Chang, X. Wang, G. Guo, et al. Monolithic 3D nanoelectrospray emitters based on a continuous fluid-assisted etching strategy for glass droplet microfluidic chip-mass spectrometry. Chem Sci, 15 (20) (2024), pp. 7781-7788.
|
[146] |
M. Tang, L. Tan, M. Zhang, H. Shi, Y. Zhao, D. Xu, et al. Rapid determination of biogenic amines in ossotide injections by microfluidic chip-mass spectrometry platform: optimization of microfluidic chip derivatization using response surface methodology. Microchem J, 199 (2024), Article 109989.
|
[147] |
H. Nazari, A. Heirani-Tabasi, S. Ghorbani, H. Eyni, S. Razavi Bazaz, M. Khayati, et al. Microfluidic-based droplets for advanced regenerative medicine: current challenges and future trends. Biosensors, 12 (1) (2021), p. 20.
|
[148] |
J. Wang, D. Tham, W. Wei, Y.S. Shin, C. Ma, H. Ahmad, et al. Quantitating cell-cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett, 12 (12) (2012), pp. 6101-6106.
|
[149] |
L. Mou, R. Dong, B. Hu, Z. Li, J. Zhang, X. Jiang. Hierarchically structured microchip for point-of-care immunoassays with dynamic detection ranges. Lab Chip, 19 (16) (2019), pp. 2750-2757.
|