基于液滴的微流控技术结合质谱分析用于微蛋白质组学研究

Hang Li, Yudan Ma, Rongxin Fu, Jiaxi Peng, Yanbing Zhai, Jinhua Li, Wei Xu, Siyi Hu, Hanbin Ma, Aaron R. Wheeler, Shuailong Zhang

工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 37-53.

PDF(5342 KB)
PDF(5342 KB)
工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 37-53. DOI: 10.1016/j.eng.2024.08.018
研究论文
Review

基于液滴的微流控技术结合质谱分析用于微蛋白质组学研究

作者信息 +

Droplet-Based Microfluidics with Mass Spectrometry for Microproteomics

Author information +
History +

Abstract

Microproteomics, the profiling of protein expressions in small cell populations or individual cells, is essential for understanding complex biological systems. However, sample loss and insufficient sensitivity of analytical techniques pose severe challenges to this field. Microfluidics, particularly droplet-based microfluidics, provides an ideal approach by enabling miniaturized and integrated workflows to process samples and offers several advantages, including reduced sample loss, low reagent consumption, faster reaction times, and improved throughput. Droplet-based microfluidics manipulates droplets of fluids to function as discrete reaction units, enabling complex chemical reactions and biological workflows in a miniaturized setting. This article discusses a variety of on-chip functions of droplet-based microfluidics, including cell sorting, cell culture, and sample processing. We then highlight recent advances in the mass spectrometry (MS)-based analysis of single cells using droplet-based microfluidic platforms, including digital microfluidics (DMF). Finally, we review the integrated DMF-MS systems that enable automated and parallel proteomic profiling of single cells with high sensitivity and discuss the applications of the technology and its future perspectives.

Keywords

Droplet-based microfluidics / Mass spectrometry / Microproteomics

引用本文

导出引用
Hang Li, Yudan Ma, Rongxin Fu. 基于液滴的微流控技术结合质谱分析用于微蛋白质组学研究. Engineering. 2024, 43(12): 37-53 https://doi.org/10.1016/j.eng.2024.08.018

参考文献

[1]
S.J. Altschuler, L.F. Wu. Cellular heterogeneity: do differences make a difference?. Cell, 141 (4) (2010), pp. 559-563.
[2]
M. Kærn, T.C. Elston, W.J. Blake, J.J. Collins. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet, 6 (6) (2005), pp. 451-464.
[3]
E. Shapiro, T. Biezuner, S. Linnarsson. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet, 14 (9) (2013), pp. 618-630.
[4]
C. Gawad, W. Koh, S.R. Quake. Single-cell genome sequencing: current state of the science. Nat Rev Genet, 17 (3) (2016), pp. 175-188.
[5]
S. Lin, Y. Liu, M. Zhang, X. Xu, Y. Chen, H. Zhang, et al. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. Lab Chip, 21 (20) (2021), pp. 3829-3849.
[6]
B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, et al. Global quantification of mammalian gene expression control. Nature, 473 (7347) (2011), pp. 337-342.
[7]
Y. Liu, A. Beyer, R. Aebersold. On the dependency of cellular protein levels on mRNA abundance. Cell, 165 (3) (2016), pp. 535-550.
[8]
A. Doerr. Single-cell proteomics. Nat Methods, 16 (1) (2019), p. 20.
[9]
M. Labib, S.O. Kelley. Single-cell analysis targeting the proteome. Nat Rev Chem, 4 (3) (2020), pp. 143-158.
[10]
D.R. Bandura, V.I. Baranov, O.I. Ornatsky, A. Antonov, R. Kinach, X. Lou, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem, 81 (16) (2009), pp. 6813-6822.
[11]
C. Giesen, H.A.O. Wang, D. Schapiro, N. Zivanovic, A. Jacobs, B. Hattendorf, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods, 11 (4) (2014), pp. 417-422.
[12]
Q. Shi, L. Qin, W. Wei, F. Geng, R. Fan, Y. Shik Shin, et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci USA, 109 (2) (2012), pp. 419-424.
[13]
N. Kravchenko-Balasha, Y.S. Shin, A. Sutherland, R.D. Levine, J.R. Heath. Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement. Proc Natl Acad Sci USA, 113 (20) (2016), pp. 5520-5525.
[14]
A.J. Hughes, D.P. Spelke, Z. Xu, C.C. Kang, D.V. Schaffer, A.E. Herr. Single-cell western blotting. Nat Methods, 11 (7) (2014), pp. 749-755.
[15]
C.C. Kang, J.M. Lin, Z. Xu, S. Kumar, A.E. Herr. Single-cell western blotting after whole-cell imaging to assess cancer chemotherapeutic response. Anal Chem, 86 (20) (2014), pp. 10429-10436.
[16]
C.C. Kang, K.A. Yamauchi, J. Vlassakis, E. Sinkala, T.A. Duncombe, A.E. Herr. Single cell-resolution western blotting. Nat Protoc, 11 (8) (2016), pp. 1508-1530.
[17]
T.E. Angel, U.K. Aryal, S.M. Hengel, E.S. Baker, R.T. Kelly, E.W. Robinson, et al. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev, 41 (10) (2012), pp. 3912-3928.
[18]
T.J. Comi, T.D. Do, S.S. Rubakhin, J.V. Sweedler. Categorizing cells on the basis of their chemical profiles: progress in single-cell mass spectrometry. J Am Chem Soc, 139 (11) (2017), pp. 3920-3929.
[19]
R.T. Kelly. Single-cell proteomics: progress and prospects. Mol Cell Proteomics, 19 (11) (2020), pp. 1739-1748.
[20]
S.T. Gebreyesus, G. Muneer, C.C. Huang, A.A. Siyal, M. Anand, Y.J. Chen, et al. Recent advances in microfluidics for single-cell functional proteomics. Lab Chip, 23 (7) (2023), pp. 1726-1751.
[21]
X. Xu, Q. Zhang, M. Li, S. Lin, S. Liang, L. Cai, et al. Microfluidic single-cell multiomics analysis. View, 4 (1) (2023), Article 20220034.
[22]
S.M. Scott, Z. Ali. Fabrication methods for microfluidic devices: an overview. Micromachines, 12 (3) (2021), p. 319.
[23]
G.M. Whitesides. The origins and the future of microfluidics. Nature, 442 (7101) (2006), pp. 368-373.
[24]
T. Moragues, D. Arguijo, T. Beneyton, C. Modavi, K. Simutis, A.R. Abate, et al. Droplet-based microfluidics. Nat Rev Methods Primers, 3 (1) (2023), p. 32.
[25]
L.R. Shang, Y. Cheng, Y.J. Zhao. Emerging droplet microfluidics. Chem Rev, 117 (12) (2017), pp. 7964-8040.
[26]
Y. Ding, P.D. Howes, A.J. deMello. Recent advances in droplet microfluidics. Anal Chem, 92 (1) (2020), pp. 132-149.
[27]
D. Gao, H. Liu, Y. Jiang, J.M. Lin. Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab Chip, 13 (17) (2013), pp. 3309-3322.
[28]
W. Zhang, Q. Zhang, J.M. Lin. Cell analysis on microfluidics combined with mass spectrometry. Anal Sci, 37 (2) (2021), pp. 249-260.
[29]
P. Zhu, L. Wang. Passive and active droplet generation with microfluidics: a review. Lab Chip, 17 (1) (2017), pp. 34-75.
[30]
B.X. Li, X. Ma, J.H. Cheng, T. Tian, J. Guo, Y. Wang, et al. Droplets microfluidics platform—a tool for single cell research. Front Bioeng Biotechnol, 11 (2023), Article 1121870.
[31]
O. Caro-Pérez, J. Casals-Terré, M.B. Roncero. Materials and manufacturing methods for EWOD devices: current status and sustainability challenges. Macromol Mater Eng, 308 (1) (2023), Article 2200193.
[32]
T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett, 86 (18) (2001), pp. 4163-4166.
[33]
J. Xu, S. Li, J. Tan, Y. Wang, G. Luo. Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE J, 52 (9) (2006), pp. 3005-3010.
[34]
M.L.J. Steegmans, K.G.P.H. Schroën, R.M. Boom. Characterization of emulsification at flat microchannel Y junctions. Langmuir, 25 (6) (2009), pp. 3396-3401.
[35]
P.B. Umbanhowar, V. Prasad, D.A. Weitz. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir, 16 (2) (2000), pp. 347-351.
[36]
S.L. Anna, N. Bontoux, H.A. Stone. Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett, 82 (3) (2003), pp. 364-366.
[37]
Y. He, Z. Lu, H. Fan, T. Zhang. A photofabricated honeycomb micropillar array for loss-free trapping of microfluidic droplets and application to digital PCR. Lab Chip, 21 (20) (2021), pp. 3933-3941.
[38]
J.H. Xu, G.S. Luo, G.G. Chen, J.D. Wang. Experimental and theoretical approaches on droplet formation from a micrometer screen hole. J Membr Sci, 266 (1-2) (2005), pp. 121-131.
[39]
Y. Zhu, Y.X. Zhang, L.F. Cai, Q. Fang. Sequential operation droplet array: an automated microfluidic platform for picoliter-scale liquid handling, analysis, and screening. Anal Chem, 85 (14) (2013), pp. 6723-6731.
[40]
Y. Zhu, P.D. Piehowski, R. Zhao, J. Chen, Y. Shen, R.J. Moore, et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells. Nat Commun, 9 (1) (2018), p. 882.
[41]
M.G. Pollack, A.D. Shenderov, R.B. Fair. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip, 2 (2) (2002), pp. 96-101.
[42]
S.K. Cho, H. Moon, C.J. Kim. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst, 12 (1) (2003), pp. 70-80.
[43]
U.C. Yi, C.J. Kim. Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J Micromech Microeng, 16 (10) (2006), pp. 2053-2059.
[44]
D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, et al. Electric control of droplets in microfluidic devices. Angew Chem Int Ed Engl, 45 (16) (2006), pp. 2556-2560.
[45]
S.H. Tan, B. Semin, J.C. Baret. Microfluidic flow-focusing in ac electric fields. Lab Chip, 14 (6) (2014), pp. 1099-1106.
[46]
N.T. Nguyen, T.H. Ting, Y.F. Yap, T.N. Wong, J.C.K. Chai, W.L. Ong, et al. Thermally mediated droplet formation in microchannels. Appl Phys Lett, 91 (2007), Article 084102.
[47]
S.Y. Park, T.H. Wu, Y. Chen, M.A. Teitell, P.Y. Chiou. High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip, 11 (6) (2011), pp. 1010-1012.
[48]
J. Liu, S.H. Tan, Y.F. Yap, M.Y. Ng, N.T. Nguyen. Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluidics, 11 (2) (2011), pp. 177-187.
[49]
C.T. Chen, G.B. Lee. Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip. J Microelectromech Syst, 15 (6) (2006), pp. 1492-1498.
[50]
A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz. Monodisperse double emulsions generated from a microcapillary device. Science, 308 (5721) (2005), pp. 537-541.
[51]
R. Sanka, J. Lippai, D. Samarasekera, S. Nemsick, D. Densmore.3DμF-interactive design environment for continuous flow microfluidic devices. Sci Rep, 9 (1) (2019), p. 9166.
[52]
X. Niu, F. Gielen, J.B. Edel, A.J. deMello. A microdroplet dilutor for high-throughput screening. Nat Chem, 3 (6) (2011), pp. 437-442.
[53]
H. Song, J.D. Tice, R.F. Ismagilov. A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed, 42 (7) (2003), pp. 768-772.
[54]
X. Yu, W. Ruan, F. Lin, W. Qian, Y. Zou, Y. Liu, et al. Digital microfluidics-based digital counting of single-cell copy number variation (dd-scCNV Seq). Proc Natl Acad Sci USA, 120 (20) (2023), Article e2221934120.
[55]
Q. Ruan, W. Ruan, X. Lin, Y. Wang, F. Zou, L. Zhou, et al. Digital-WGS: automated, highly efficient whole-genome sequencing of single cells by digital microfluidics. Sci Adv, 6 (50) (2020), Article eabd6454.
[56]
C. Wu, R. Chen, Y. Liu, Z. Yu, Y. Jiang, X. Cheng. A planar dielectrophoresis-based chip for high-throughput cell pairing. Lab Chip, 17 (23) (2017), pp. 4008-4014.
[57]
Y. He, Z. Lu, K. Liu, L. Wang, Q. Xu, H. Fan, et al. Photofabricated channel-digital microfluidics (pCDMF): a promising lab-on-a-chip platform for fully integrated digital PCR. Sens Actuators B Chem, 399 (2024), Article 134851.
[58]
E. Samiei, M. Tabrizian, M. Hoorfar. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip, 16 (13) (2016), pp. 2376-2396.
[59]
S.T. Seiler, G.L. Mantalas, J. Selberg, S. Cordero, S. Torres-Montoya, P.V. Baudin, et al. Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids. Sci Rep, 12 (1) (2022), p. 20173.
[60]
L. Pang, J. Ding, X.X. Liu, Z.X. Kou, L.L. Guo, X. Xu, et al. Microfluidics-based single-vell research for intercellular interaction. Front Cell Dev Biol, 9 (2021), Article 680307.
[61]
S. Köster, F.E. Angilè, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip, 8 (7) (2008), pp. 1110-1115.
[62]
L. Mazutis, J. Gilbert, W.L. Ung, D.A. Weitz, A.D. Griffiths, J.A. Heyman. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc, 8 (5) (2013), pp. 870-891.
[63]
Y. Nakagawa, S. Ohnuki, N. Kondo, K. Itto-Nakama, F. Ghanegolmohammadi, A. Isozaki, et al. Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab Chip, 21 (19) (2021), pp. 3793-3803.
[64]
Z. Zhu, C.J. Yang. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc Chem Res, 50 (1) (2017), pp. 22-31.
[65]
B.M. Tiemeijer, M.W.D. Sweep, J.J.F. Sleeboom, K.J. Steps, J.F. van Sprang, P. De Almeida, et al. Probing single-cell macrophage polarization and heterogeneity using thermo-reversible hydrogels in droplet-based microfluidics. Front Bioeng Biotechnol, 9 (2021), Article 715408.
[66]
D.G. Lin, X. Chen, Y. Liu, Z. Lin, Y.Z. Luo, M.P. Fu, et al. Microgel single-cell culture arrays on a microfluidic chip for selective expansion and recovery of colorectal cancer stem cells. Anal Chem, 93 (37) (2021), pp. 12628-12638.
[67]
E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA, 106 (34) (2009), pp. 14195-14200.
[68]
B.L. Wang, A. Ghaderi, H. Zhou, J. Agresti, D.A. Weitz, G.R. Fink, et al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol, 32 (5) (2014), pp. 473-478.
[69]
T. Khajvand, P. Huang, L. Li, M. Zhang, F. Zhu, X. Xu, et al. Interfacing droplet microfluidics with antibody barcodes for multiplexed single-cell protein secretion profiling. Lab Chip, 21 (24) (2021), pp. 4823-4830.
[70]
S. Hu, J. Ye, S. Shi, C. Yang, K. Jin, C. Hu, et al. Large-area electronics-enabled high-resolution digital microfluidics for parallel single-cell manipulation. Anal Chem, 95 (17) (2023), pp. 6905-6914.
[71]
B. Hadwen, G.R. Broder, D. Morganti, A. Jacobs, C. Brown, J.R. Hector, et al. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays. Lab Chip, 12 (18) (2012), pp. 3305-3313.
[72]
S. Anderson, B. Hadwen, C. Brown. Thin-film-transistor digital microfluidics for high value in vitro diagnostics at the point of need. Lab Chip, 21 (5) (2021), pp. 962-975.
[73]
L. Huang, Y. Feng, F. Liang, P. Zhao, W. Wang. Dual-fiber microfluidic chip for multimodal manipulation of single cells. Biomicrofluidics, 15 (1) (2021), Article 014106.
[74]
K. Samlali, F. Ahmadi, A.B.V. Quach, G. Soffer, S.C.C. Shih. One cell, one drop, one click: hybrid microfluidics for mammalian single cell isolation. Small, 16 (34) (2020), Article 2002400.
[75]
T. Jing, R. Ramji, M.E. Warkiani, J. Han, C.T. Lim, C.H. Chen. Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens Bioelectron, 66 (2015), pp. 19-23.
[76]
S. Mao, W. Zhang, Q. Huang, M. Khan, H. Li, K. Uchiyama, et al. In situ scatheless cell detachment reveals correlation between adhesion strength and viability at single-cell resolution. Angew Chem Int Ed, 57 (1) (2018), pp. 236-240.
[77]
M.J. Jebrail, A.R. Wheeler. Digital microfluidic method for protein extraction by precipitation. Anal Chem, 81 (1) (2009), pp. 330-335.
[78]
H. Yang, J.M. Mudrik, M.J. Jebrail, A.R. Wheeler. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction. Anal Chem, 83 (10) (2011), pp. 3824-3830.
[79]
X. Xu, M. Zhang, X. Zhang, Y. Liu, L. Cai, Q. Zhang, et al. Decoding expression dynamics of protein and transcriptome at the single-cell level in paired picoliter chambers. Anal Chem, 94 (23) (2022), pp. 8164-8173.
[80]
N.A. Mousa, M.J. Jebrail, H. Yang, M. Abdelgawad, P. Metalnikov, J. Chen, et al. Droplet-scale estrogen assays in breast tissue, blood, and serum. Sci Transl Med, 1 (1) (2009), Article 1ra2.
[81]
W. Zhang, N. Li, L. Lin, Q. Huang, K. Uchiyama, J.M. Lin. Concentrating single cells in picoliter droplets for phospholipid profiling on a microfluidic system. Small, 16 (9) (2020), Article 1903402.
[82]
Z. Dong, Q. Fang. Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. Trac Trends Analyt Chem, 124 (2020), Article 115812.
[83]
Q. Lou, Y. Ma, S.P. Zhao, G.S. Du, Q. Fang. A flexible and cost-effective manual droplet operation platform for miniaturized cell assays and single cell analysis. Talanta, 224 (2021), Article 121874.
[84]
V. Marx. A dream of single-cell proteomics. Nat Methods, 16 (9) (2019), pp. 809-812.
[85]
Q. Chen, G. Yan, M. Gao, X. Zhang. Ultrasensitive proteome profiling for 100 living cells by direct cell injection, online digestion and nano-LC-MS/MS analysis. Anal Chem, 87 (13) (2015), pp. 6674-6680.
[86]
C.S. Hughes, S. Moggridge, T. Müller, P.H. Sorensen, G.B. Morin, J. Krijgsveld. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc, 14 (1) (2019), pp. 68-85.
[87]
Z. Zhang, K.M. Dubiak, P.W. Huber, N.J. Dovichi. Miniaturized filter-aided sample preparation (micro-FASP) method for high throughput, ultrasensitive proteomics sample preparation reveals proteome asymmetry in xenopus laevis embryos. Anal Chem, 92 (7) (2020), pp. 5554-5560.
[88]
H. Zhao, Y. Chen, H. Li, Y. Zhang, W. Zhang, W. Qin. An angled-shape tip-based strategy for highly sensitive proteomic profiling of a low number of cells. Anal Methods, 15 (9) (2023), pp. 1215-1222.
[89]
W. Chen, S. Wang, S. Adhikari, Z. Deng, L. Wang, L. Chen, et al. Simple and integrated spintip-based technology applied for deep proteome profiling. Anal Chem, 88 (9) (2016), pp. 4864-4871.
[90]
Y. Liang, H. Acor, M.A. McCown, A.J. Nwosu, H. Boekweg, N.B. Axtell, et al. Fully automated sample processing and analysis workflow for low-input proteome profiling. Anal Chem, 93 (3) (2021), pp. 1658-1666.
[91]
T. Masuda, Y. Inamori, A. Furukawa, M. Yamahiro, K. Momosaki, C.H. Chang, et al. Water droplet-in-oil digestion method for single-cell proteomics. Anal Chem, 94 (29) (2022), pp. 10329-10336.
[92]
Y. Zhu, R. Zhao, P.D. Piehowski, R.J. Moore, S. Lim, V.J. Orphan, et al. Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. Int J Mass Spectrom, 427 (2018), pp. 4-10.
[93]
E.S. Baker, K.E. Burnum-Johnson, Y.M. Ibrahim, D.J. Orton, M.E. Monroe, R.T. Kelly, et al. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics, 15 (16) (2015), pp. 2766-2776.
[94]
C.F. Tsai, R. Zhao, S.M. Williams, R.J. Moore, K. Schultz, W.B. Chrisler, et al. An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics. Mol Cell Proteomics, 19 (5) (2020), pp. 828-838.
[95]
A.D. Brunner, M. Thielert, C. Vasilopoulou, C. Ammar, F. Coscia, A. Mund, et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol Syst Biol, 18 (3) (2022), p. e10798.
[96]
D.B. Bekker-Jensen, A. Martinez-Val, S. Steigerwald, P. Ruther, K.L. Fort, T.N. Arrey, et al. A compact quadrupole-orbitrap mass spectrometer with faims interface improves proteome coverage in short LC gradients. Mol Cell Proteomics, 19 (4) (2020), pp. 716-729.
[97]
W. Fang, Z.K. Du, L.L. Kong, B. Fu, G.B. Wang, Y.J. Zhang, et al. A rapid and sensitive single-cell proteomic method based on fast liquid-chromatography separation, retention time prediction and MS1-only acquisition. Anal Chim Acta, 1251 (2023), Article 341038.
[98]
B. Budnik, E. Levy, G. Harmange, N. Slavov. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol, 19 (1) (2018), p. 161.
[99]
N. Slavov. Increasing proteomics throughput. Nat Biotechnol, 39 (7) (2021), pp. 809-810.
[100]
A.A. Petelski, E. Emmott, A. Leduc, R.G. Huffman, H. Specht, D.H. Perlman, et al. Multiplexed single-cell proteomics using SCoPE2. Nat Protoc, 16 (12) (2021), pp. 5398-5425.
[101]
T.K. Cheung, C.Y. Lee, F.P. Bayer, A. McCoy, B. Kuster, C.M. Rose. Defining the carrier proteome limit for single-cell proteomics. Nat Methods, 18 (1) (2021), pp. 76-83.
[102]
L.L. Kong, F.Z. Li, W. Fang, Z.K. Du, G.B. Wang, Y.J. Zhang, et al. Sensitive N-glycopeptide profiling of single and rare cells using an isobaric labeling strategy without enrichment. Anal Chem, 95 (30) (2023), pp. 11326-11334.
[103]
Y. Zhu, G. Clair, W.B. Chrisler, Y. Shen, R. Zhao, A.K. Shukla, et al. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive NanoLC-MS. Angew Chem Int Ed, 130 (38) (2018), pp. 12550-12554.
[104]
M. Dou, G. Clair, C.F. Tsai, K. Xu, W.B. Chrisler, R.L. Sontag, et al. High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform. Anal Chem, 91 (20) (2019), pp. 13119-13127.
[105]
P.D. Piehowski, Y. Zhu, L.M. Bramer, K.G. Stratton, R. Zhao, D.J. Orton, et al. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat Commun, 11 (1) (2020), p. 8.
[106]
J. Woo, S.M. Williams, L.M. Markillie, S. Feng, C.F. Tsai, V. Aguilera-Vazquez, et al. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nat Commun, 12 (1) (2021), p. 6246.
[107]
K.G.I. Webber, T. Truong, S.M. Johnston, S.E. Zapata, Y. Liang, J.M. Davis, et al. Label-free profiling of up to 200 single-cell proteomes per day using a dual-column nanoflow liquid chromatography platform. Anal Chem, 94 (15) (2022), pp. 6017-6025.
[108]
Z.Y. Li, M. Huang, X.K. Wang, Y. Zhu, J.S. Li, C.C.L. Wong, et al. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis. Anal Chem, 90 (8) (2018), pp. 5430-5438.
[109]
Y. Li, H. Li, Y. Xie, S. Chen, R. Qin, H. Dong, et al. An integrated strategy for mass spectrometry-based multiomics analysis of single cells. Anal Chem, 93 (42) (2021), pp. 14059-14067.
[110]
M.J. Jebrail, A.H.C. Ng, V. Rai, R. Hili, A.K. Yudin, A.R. Wheeler. Synchronized synthesis of peptide-based macrocycles by digital microfluidics. Angew Chem Int Ed, 49 (46) (2010), pp. 8625-8629.
[111]
V.N. Luk, A.R. Wheeler. A digital microfluidic approach to proteomic sample processing. Anal Chem, 81 (11) (2009), pp. 4524-4530.
[112]
N.M. Lafrenière, J.M. Mudrik, A.H.C. Ng, B. Seale, N. Spooner, A.R. Wheeler. Attractive design: an elution solvent optimization platform for magnetic-bead-based fractionation using digital microfluidics and design of experiments. Anal Chem, 87 (7) (2015), pp. 3902-3910.
[113]
M.J. Jebrail, H. Yang, J.M. Mudrik, N.M. Lafrenière, C. McRoberts, O.Y. Al-Dirbashi, et al. A digital microfluidic method for dried blood spot analysis. Lab Chip, 11 (19) (2011), pp. 3218-3224.
[114]
R. Fobel, C. Fobel, A.R. Wheeler. DropBot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl Phys Lett, 102 (19) (2013), Article 193513.
[115]
S.C.C. Shih, H. Yang, M.J. Jebrail, R. Fobel, N. McIntosh, O.Y. Al-Dirbashi, et al. Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal Chem, 84 (8) (2012), pp. 3731-3738.
[116]
A.E. Kirby, A.R. Wheeler. Digital microfluidics: an emerging sample preparation platform for mass spectrometry. Anal Chem, 85 (13) (2013), pp. 6178-6184.
[117]
J. Leipert, A. Tholey. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants. Lab Chip, 19 (20) (2019), pp. 3490-3498.
[118]
C. Chan, J. Peng, V. Rajesh, E.Y. Scott, A.A. Sklavounos, M. Faiz, et al. Digital microfluidics for microproteomic analysis of minute mammalian tissue samples enabled by a photocleavable surfactant. J Proteome Res, 22 (10) (2023), pp. 3242-3253.
[119]
J. Leipert, M.K. Steinbach, A. Tholey. Isobaric peptide labeling on digital microfluidics for quantitative low cell number proteomics. Anal Chem, 93 (15) (2021), pp. 6278-6286.
[120]
M.K. Steinbach, J. Leipert, C. Blurton, M. Leippe, A. Tholey. Digital microfluidics supported microproteomics for quantitative proteome analysis of single caenorhabditis elegans nematodes. J Proteome Res, 21 (8) (2022), pp. 1986-1996.
[121]
J. Leipert, P.T. Kaulich, M.K. Steinbach, B. Steer, K. Winkels, C. Blurton, et al. Digital microfluidics and magnetic bead-based intact proteoform elution for quantitative top-down nanoproteomics of single C. elegans nematodes. Angew Chem Int Ed, 62 (28) (2023), Article e202301969.
[122]
J. Lamanna, E.Y. Scott, H.S. Edwards, M.D. Chamberlain, M.D. Dryden, J. Peng, et al. Digital microfluidic isolation of single cells for-omics. Nat Commun, 11 (1) (2020), p. 5632.
[123]
Z. Yang, K. Jin, Y. Chen, Q. Liu, H. Chen, S. Hu, et al. AM-DMF-SCP: integrated single-cell proteomics analysis on an active matrix digital microfluidic chip. JACS Au, 4 (5) (2024), pp. 1811-1823.
[124]
J. Peng, C. Chan, S. Zhang, A.A. Sklavounos, M.E. Olson, E.Y. Scott, et al. All-in-one digital microfluidics pipeline for proteomic sample preparation and analysis. Chem Sci, 14 (11) (2023), pp. 2887-2900.
[125]
A. Das, C. Weise, M. Polack, R.D. Urban, B. Krafft, S. Hasan, et al. On-the-fly mass spectrometry in digital microfluidics enabled by a microspray hole: toward multidimensional reaction monitoring in automated synthesis platforms. J Am Chem Soc, 144 (23) (2022), pp. 10353-10360.
[126]
S.M. Williams, A.V. Liyu, C.F. Tsai, R.J. Moore, D.J. Orton, W.B. Chrisler, et al. Automated coupling of nanodroplet sample preparation with liquid chromatography-mass spectrometry for high-throughput single-cell proteomics. Anal Chem, 92 (15) (2020), pp. 10588-10596.
[127]
C. Ctortecka, D. Hartlmayr, A. Seth, S. Mendjan, G. Tourniaire, N.D. Udeshi, et al. An automated nanowell-array workflow for quantitative multiplexed single-cell proteomics sample preparation at high sensitivity. Mol Cell Proteomics, 22 (12) (2023), Article 100665.
[128]
S.T. Gebreyesus, A.A. Siyal, R.B. Kitata, E.S.W. Chen, B. Enkhbayar, T. Angata, et al. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry. Nat Commun, 13 (1) (2022), p. 37.
[129]
A. Mund, A.D. Brunner, M. Mann. Unbiased spatial proteomics with single-cell resolution in tissues. Mol Cell, 82 (12) (2022), pp. 2335-2349.
[130]
C. Stutzmann, J. Peng, Z. Wu, C. Savoie, I. Sirois, P. Thibault, et al. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. Cell Rep Methods, 3 (6) (2023), Article 100511.
[131]
R. Su, L.H. Fan, C. Cao, L. Wang, Z. Du, Z. Cai, et al. Global profiling of RNA-binding protein target sites by LACE-seq. Nat Cell Biol, 23 (6) (2021), pp. 664-675.
[132]
V. Espina, M. Heiby, M. Pierobon, L.A. Liotta. Laser capture microdissection technology. Expert Rev Mol Diagn, 7 (5) (2007), pp. 647-657.
[133]
Y. Zhu, M. Dou, P.D. Piehowski, Y. Liang, F. Wang, R.K. Chu, et al. Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to nanodroplets. Mol Cell Proteomics, 17 (9) (2018), pp. 1864-1874.
[134]
Y. Kwon, P.D. Piehowski, R. Zhao, R.L. Sontag, R.J. Moore, K.E. Burnum-Johnson, et al. Hanging drop sample preparation improves sensitivity of spatial proteomics. Lab Chip, 22 (15) (2022), pp. 2869-2877.
[135]
K. Xu, Y. Liang, P.D. Piehowski, M. Dou, K.C. Schwarz, R. Zhao, et al. Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells. Anal Bioanal Chem, 411 (19) (2019), pp. 4587-4596.
[136]
Y. Liang, Y. Zhu, M. Dou, K. Xu, R.K. Chu, W.B. Chrisler, et al. Spatially resolved proteome profiling of <  200 cells from tomato fruit pericarp by integrating laser-capture microdissection with nanodroplet sample preparation. Anal Chem, 90 (18) (2018), pp. 11106-11114.
[137]
R. Xu, J. Tang, Q. Deng, W. He, X. Sun, L. Xia, et al. Spatial-resolution cell type proteome profiling of cancer tissue by fully integrated proteomics technology. Anal Chem, 90 (9) (2018), pp. 5879-5886.
[138]
R. Satija, J.A. Farrell, D. Gennert, A.F. Schier, A. Regev. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol, 33 (5) (2015), pp. 495-502.
[139]
M. Dolatmoradi, L.Z. Samarah, A. Vertes. Single-cell metabolomics by mass spectrometry: opportunities and challenges. Anal Sens, 2 (1) (2022), Article e202100032.
[140]
C. Seydel. Single-cell metabolomics hits its stride. Nat Methods, 18 (12) (2021), pp. 1452-1456.
[141]
X. Li, H.S. Pak, F. Huber, J. Michaux, M. Taillandier-Coindard, E.R. Altimiras, et al. A microfluidics-enabled automated workflow of sample preparation for MS-based immunopeptidomics. Cell Rep Methods, 3 (6) (2023), Article 100479.
[142]
S. Feola, M. Haapala, K. Peltonen, C. Capasso, B. Martins, G. Antignani, et al. PeptiCHIP: a microfluidic platform for tumor antigen landscape identification. ACS Nano, 15 (10) (2021), pp. 15992-16010.
[143]
P. Skowronek, M. Thielert, E. Voytik, M.C. Tanzer, F.M. Hansen, S. Willems, et al. Rapid and in-depth coverage of the (phospho-) proteome with deep libraries and optimal window design for dia-PASEF. Mol Cell Proteomics, 21 (9) (2022), Article 100279.
[144]
C.B. Messner, V. Demichev, N. Bloomfield, J.S.L. Yu, M. White, M. Kreidl, et al. Ultra-fast proteomics with scanning SWATH. Nat Biotechnol, 39 (7) (2021), pp. 846-854.
[145]
Z. Guo, Y. Zhao, Z. Jin, Y. Chang, X. Wang, G. Guo, et al. Monolithic 3D nanoelectrospray emitters based on a continuous fluid-assisted etching strategy for glass droplet microfluidic chip-mass spectrometry. Chem Sci, 15 (20) (2024), pp. 7781-7788.
[146]
M. Tang, L. Tan, M. Zhang, H. Shi, Y. Zhao, D. Xu, et al. Rapid determination of biogenic amines in ossotide injections by microfluidic chip-mass spectrometry platform: optimization of microfluidic chip derivatization using response surface methodology. Microchem J, 199 (2024), Article 109989.
[147]
H. Nazari, A. Heirani-Tabasi, S. Ghorbani, H. Eyni, S. Razavi Bazaz, M. Khayati, et al. Microfluidic-based droplets for advanced regenerative medicine: current challenges and future trends. Biosensors, 12 (1) (2021), p. 20.
[148]
J. Wang, D. Tham, W. Wei, Y.S. Shin, C. Ma, H. Ahmad, et al. Quantitating cell-cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett, 12 (12) (2012), pp. 6101-6106.
[149]
L. Mou, R. Dong, B. Hu, Z. Li, J. Zhang, X. Jiang. Hierarchically structured microchip for point-of-care immunoassays with dynamic detection ranges. Lab Chip, 19 (16) (2019), pp. 2750-2757.
PDF(5342 KB)

Accesses

Citation

Detail

段落导航
相关文章

/