[1] |
J. Yang, Y. Xu. Nanofluidics for sub-single cellular studies: nascent progress, critical technologies, and future perspectives. Chin Chem Lett, 33 (6) (2022), pp. 2799-2806.
|
[2] |
L. Chen, C. Yang, Y. Xiao, X. Yan, L. Hu, M. Eggersdorfer, et al. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Mater Today Nano, 16 (2021), Article 100136.
|
[3] |
K. Mawatari, Y. Kazoe, H. Shimizu, Y. Pihosh, T. Kitamori. Extended-nanofluidics: fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices. Anal Chem, 86 (9) (2014), pp. 4068-4077.
|
[4] |
D.G. Haywood, A. Saha-Shah, L.A. Baker, S.C. Jacobson. Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. Anal Chem, 87 (1) (2015), pp. 172-187.
|
[5] |
Nature materials. Nanofluidics is on the rise. Nat Mater 2020; 19(3):253.
|
[6] |
N. Chantipmanee, Y. Xu. Nanofluidics for chemical and biological dynamics in solution at the single molecular level. Trac Trend Anal Chem, 158 (2023), Article 116877.
|
[7] |
Y. Xu, K. Jang, T. Yamashita, Y. Tanaka, K. Mawatari, T. Kitamori. Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics. Anal Bioanal Chem, 402 (1) (2012), pp. 99-107.
|
[8] |
L. Bocquet, P. Tabeling. Physics and technological aspects of nanofluidics. Lab Chip, 14 (17) (2014), pp. 3143-3158.
|
[9] |
W. Sparreboom, A. Van Den Berg, J.C.T. Eijkel. Principles and applications of nanofluidic transport. Nat Nanotechnol, 4 (11) (2009), pp. 713-720.
|
[10] |
L. Bocquet. Nanofluidics coming of age. Nat Mater, 19 (3) (2020), pp. 254-256.
|
[11] |
Y. Xu. Nanofluidics: a new arena for materials science. Adv Mater, 30 (3) (2018), Article 1702419.
|
[12] |
Y. He, M. Tsutsui, Y. Zhou, X.S. Miao. Solid-state nanopore systems: from materials to applications. NPG Asia Mater, 13 (1) (2021), p. 48.
|
[13] |
W. Ma, W. Xie, S. Fang, S. He, B. Yin, Y. Wang, et al. Nanopore electrochemical sensors for emerging hazardous pollutants detection. Electrochim Acta, 475 (2024), Article 143678.
|
[14] |
A. Canaguier, R. Guilbaud, E. Denis, G. Magdelenat, C. Belser, B. Istace, et al. Oxford nanopore and bionano genomics technologies evaluation for plant structural variation detection. BMC Genom, 23 (1) (2022), p. 317.
|
[15] |
M. Thakur, N. Cai, M. Zhang, Y. Teng, A. Chernev, M. Tripathi, et al. High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing. Npj 2D Mater Appl, 7 (1) (2023), p. 11.
|
[16] |
M.K. Jena, B. Pathak. Development of an artificially intelligent nanopore for high-throughput DNA sequencing with a machine-learning-aided quantum-tunneling approach. Nano Lett, 23 (7) (2023), pp. 2511-2521.
|
[17] |
L. Xue, H. Yamazaki, R. Ren, M. Wanunu, A.P. Ivanov, J.B. Edel. Solid-state nanopore sensors. Nat Rev Mater, 5 (12) (2020), pp. 931-951.
|
[18] |
E. Cao, D.V. Cain, S. Silva, Z.S. Siwy. Ion concentration polarization tunes interpore interactions and transport properties of nanopore arrays. Adv Funct Mater, 34 (11) (2024), Article 2312646.
|
[19] |
C. Koch, B. Reilly-O’Donnell, R. Gutierrez, C. Lucarelli, F.S. Ng, J. Gorelik, et al. Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers. Nat Nanotechnol, 18 (12) (2023), pp. 1483-1491.
|
[20] |
K. Wang, S. Zhang, X. Zhou, X. Yang, X. Li, Y. Wang, et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat Methods, 21 (1) (2024), pp. 92-101.
|
[21] |
C.W. Li, H. Merlitz, J.U. Sommer. Scaling behaviors of nanoparticle clusters that are driven through brush-decorated nanopores. Macromolecules, 56 (21) (2023), pp. 8710-8720.
|
[22] |
J. Feng, K. Liu, M. Graf, D. Dumcenco, A. Kis, M. Di Ventra, et al. Observation of ionic coulomb blockade in nanopores. Nat Mater, 15 (8) (2016), pp. 850-855.
|
[23] |
S. Seth, A. Rand, W. Reisner, W.B. Dunbar, R. Sladek, A. Bhattacharya. Discriminating protein tags on a dsDNA construct using a dual nanopore device. Sci Rep, 12 (1) (2022), p. 11305.
|
[24] |
L. Ma, Z. Liu, J. Man, J. Li, Z.S. Siwy, Y. Qiu. Modulation mechanism of ionic transport through short nanopores by charged exterior surfaces. Nanoscale, 15 (46) (2023), pp. 18696-18706.
|
[25] |
M. Malmir, M. Nejadi, R. Nejatipour, M. Dadsetani. Electronic and optical properties of bare and functionalized M2C and M2CO2 (M = Ti, Zr, Sc) MXene nanotubes: a comparative DFT study. Optik, 297 (2024), Article 171572.
|
[26] |
G. Cui, Z. Xu, H. Li, S. Zhang, L. Xu, A. Siria, et al. Enhanced osmotic transport in individual double-walled carbon nanotube. Nat Commun, 14 (1) (2023), p. 2295.
|
[27] |
S.I. Yamaguchi, Q. Xie, F. Ito, K. Terao, Y. Kato, M. Kuroiwa, et al. Carbon nanotube recognition by human siglec-14 provokes inflammation. Nat Nanotechnol, 18 (6) (2023), pp. 628-636.
|
[28] |
J. Leng, T. Chang. Fluid-solid coupling for microscale transport of nanoparticles in ultralong carbon nanotubes. Thin-Walled Struct, 195 (2024), Article 111431.
|
[29] |
E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet. Massive radius-dependent flow slippage in carbon nanotubes. Nature, 537 (7619) (2016), pp. 210-213.
|
[30] |
Q. Jin, Y. Ren. Review on mechanics of fluid-conveying nanotubes. Int J Eng Sci, 195 (2024), Article 104007.
|
[31] |
J. Im, Y.H. Jeong, M.C. Kim, D. Oh, J. Son, K. Hyun, et al. Wet spinning of multi-walled carbon nanotube fibers. Carbon, 216 (2024), Article 118532.
|
[32] |
J. Tae Kim, S. Spindler, V. Sandoghdar. Scanning-aperture trapping and manipulation of single charged nanoparticles. Nat Commun, 5 (1) (2014), p. 3380.
|
[33] |
Y. Mao, X. Tan, Y. Dou, L. He, S. Li, H. Cao, et al. Nanopipette: a high-precision portable programmable instrument for nanoliters to milliliters liquid handling. Sens Actuators A Phys, 365 (2024), Article 114876.
|
[34] |
J. Zheng, J. Liu, J. Zhang, Y. Jiang, S. Xu, Y. Feng, et al. Dual-current signal high-sensitivity detection of telomerase using signal amplified DNA functionalized metal-organic frameworks in glass nanopipettes. Sens Actuators B Chem, 401 (2024), Article 134950.
|
[35] |
L. Shi, A. Rana, L. Esfandiari. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors. Sci Rep, 8 (1) (2018), p. 6751.
|
[36] |
K. Peng, N.P. Morgan, F.M. Wagner, T. Siday, C.Q. Xia, D. Dede, et al. Direct and integrating sampling in terahertz receivers from wafer-scalable inas nanowires. Nat Commun, 15 (1) (2024), p. 103.
|
[37] |
A.H. Squires. Electrokinetic manipulation of a nanowire. Nat Nanotechnol, 18 (10) (2023), pp. 1128-1129.
|
[38] |
N.K. Kim, K. Kim, H. Jang, T. An, H.J. Shin, G.H. Kim. Microheater with copper nanofiber network via electrospinning and electroless deposition. Sci Rep, 13 (1) (2023), p. 22248.
|
[39] |
J.E. Escobar, J. Molina, E. Gil-Santos, J.J. Ruz, Ó. Malvar, P.M. Kosaka, et al. Nanomechanical sensing for mass flow control in nanowire-based open nanofluidic systems. ACS Nano, 17 (21) (2023), pp. 21044-21055.
|
[40] |
S. Chen, L. Chen, Y. Zhang, D. Xu, C. Hu, L. Zhang, et al. Silver nanosheets self-assembled on polystyrene microspheres to form “hot spots” with different nanogap distances for high sensitive sers detection. Talanta, 268 (Part 1) (2024), Article 125370.
|
[41] |
T. Ohshiro, M. Konno, A. Asai, Y. Komoto, A. Yamagata, Y. Doki, et al. Single-molecule RNA sequencing for simultaneous detection of m6A and 5mC. Sci Rep, 11 (1) (2021), p. 19304.
|
[42] |
K. Kumar, M. Sharma, R. Pandey. First-principles study of gallenene-based nanogap architecture for DNA nucleobase identification. Mater Chem Phys, 313 (2024), Article 128686.
|
[43] |
T. Ohshiro, Y. Komoto, M. Konno, J. Koseki, A. Asai, H. Ishii, et al. Direct analysis of incorporation of an anticancer drug into DNA at single-molecule resolution. Sci Rep, 9 (1) (2019), p. 3886.
|
[44] |
Q. Ma, Y. Li, R. Wang, H. Xu, Q. Du, P. Gao, et al. Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface. Nat Commun, 12 (1) (2021), p. 1573.
|
[45] |
Q. Ma, R. Wang, P. Gao, Y. Dai, F. Xia. Revealing the role of surface wettability in ionic detection signals of nanofluidic-based chemical sensors. Anal Chem, 94 (47) (2022), pp. 16411-16417.
|
[46] |
C. Wei, Y. Zhou, X. Yang, Y. Lu, A. Wang, Y. Zhang, et al. Parallel arrays of clay nanosheets sandwiched in two-dimensional nanofluidic membrane for enhanced ion transport properties. J Membr Sci, 680 (2023), Article 121744.
|
[47] |
K. Frykholm, V. Müller, S. Kk, K.D. Dorfman, F. Westerlund. DNA in nanochannels: theory and applications. Q Rev Biophys, 55 (2022), p. e12.
|
[48] |
M. Liu, P.J. Weston, R.H. Hurt. Controlling nanochannel orientation and dimensions in graphene-based nanofluidic membranes. Nat Commun, 12 (1) (2021), p. 507.
|
[49] |
F. Jia, X. Xiao, A. Nashalian, S. Shen, L. Yang, Z. Han, et al. Advances in graphene oxide membranes for water treatment. Nano Res, 15 (7) (2022), pp. 6636-6654.
|
[50] |
Q. Ma, W. Chu, X. Nong, J. Zhao, H. Liu, Q. Du, et al. Local electric potential-driven nanofluidic ion transport for ultrasensitive biochemical sensing. ACS Nano, 18 (8) (2024), pp. 6570-6578.
|
[51] |
W.X. Pan, L. Chen, W.Y. Li, Q. Ma, H. Xiang, N. Ma, et al. Scalable fabrication of ionic-conductive covalent organic framework fibers for capturing of sustainable osmotic energy. Adv Mater, 36 (27) (2024), p. 2401772.
|
[52] |
D. Lei, Z. Zhang, L. Jiang. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev, 53 (5) (2024), pp. 2300-2325.
|
[53] |
J. Tang, Y. Wang, H. Yang, Q. Zhang, C. Wang, L. Li, et al. All-natural 2D nanofluidics as highly-efficient osmotic energy generators. Nat Commun, 15 (1) (2024), p. 3649.
|
[54] |
R. Xu, Y. Kang, W. Zhang, B. Pan, X. Zhang. Two-dimensional mxene membranes with biomimetic sub-nanochannels for enhanced cation sieving. Nat Commun, 14 (1) (2023), p. 4907.
|
[55] |
P.P. Yan, X.C. Chen, Z.X. Liang, Y.P. Fang, J. Yao, C.X. Lu, et al. Two-dimensional nanofluidic membranes with intercalated in-plane shortcuts for high-performance blue energy harvesting. Small, 19 (4) (2023), Article 2205003.
|
[56] |
P. Kunnas, N. De Jonge, J.P. Patterson. The effect of nanochannel length on in situ loading times of diffusion-propelled nanoparticles in liquid cell electron microscopy. Ultramicroscopy, 255 (2024), Article 113865.
|
[57] |
Y. Xu, M. Shinomiya, A. Harada. Soft matter-regulated active nanovalves locally self-assembled in femtoliter nanofluidic channels. Adv Mater, 28 (11) (2016), pp. 2209-2216.
|
[58] |
R. Ohta, K. Morikawa, Y. Tsuyama, T. Kitamori. Relationship between bonding strength and surface roughness in low-temperature bonding of glass for micro/nanofluidic device. J Micromech Microeng, 34 (1) (2024), Article 017002.
|
[59] |
K. Mawatari, S. Kubota, Y. Xu, C. Priest, R. Sedev, J. Ralston, et al. Femtoliter droplet handling in nanofluidic channels: a laplace nanovalve. Anal Chem, 84 (24) (2012), pp. 10812-10816.
|
[60] |
Tanaka Y, Kawagishi H, Chantipmanee N, Xu Y. Fabrication of attoliter droplets based on liquid/solid interfaces in nanofluidic channels. Proceedings of the 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2022 Oct 23-7; Hangzhou, China. San Diego: The Chemical and Biological Microsystems Society; 2022. p. 851-2.
|
[61] |
N. Ronceray, M. Spina, V.H.Y. Chou, C.T. Lim, A.K. Geim, S. Garaj. Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation. Nat Commun, 15 (1) (2024), p. 185.
|
[62] |
Y. Kazoe, S. Kubori, K. Morikawa, K. Mawatari, T. Kitamori. Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry. Anal Sci, 38 (2) (2022), pp. 281-287.
|
[63] |
Xu Y. Bridging world-to-nanofluidics interfaces through nano-in-nano integration technology. Proceedings of the 2016 International Symposium on Micro-Nanomechatronics and Human Science NHS; 2016 Nov 28-30; Nagoya, Japan. Piscataway: IEEE; 2017. p. 2474-3771.
|
[64] |
Z. Xu, Y.K. Li, J.Y. Wang, C. Liu, J.S. Liu, L. Chen, et al. A novel method for fabrication of micro-nanofluidic devices and its application in trace enrichment. Chin J Anal Chem, 42 (2) (2014), pp. 166-172.
|
[65] |
F. Sima, K. Sugioka. Ultrafast laser manufacturing of nanofluidic systems. Nanophotonics, 10 (9) (2021), pp. 2389-2406.
|
[66] |
Y. Kazoe, Y. Xu. Advances in nanofluidics. Micromachines, 12 (4) (2021), p. 427.
|
[67] |
C. Wu, T.G. Lin, Z. Zhan, Y. Li, S.C.H. Tung, W.C. Tang, et al. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography. Microsyst Nanoeng, 3 (1) (2017), p. 16084.
|
[68] |
A. Bhardwaj, M.V. Surmani Martins, Y. You, R. Sajja, M. Rimmer, S. Goutham, et al. Fabrication of angstrom-scale two-dimensional channels for mass transport. Nat Protoc, 19 (1) (2023), pp. 240-280.
|
[69] |
H. Kamai, Y. Xu. Fabrication of ultranarrow nanochannels with ultrasmall nanocomponents in glass substrates. Micromachines, 12 (7) (2021), p. 775.
|
[70] |
Y. Xu, Q. Wu, Y. Shimatani, K. Yamaguchi. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures. Lab Chip, 15 (19) (2015), pp. 3856-3861.
|
[71] |
C. Hong, J.C. Ndukaife. Scalable trapping of single nanosized extracellular vesicles using plasmonics. Nat Commun, 14 (1) (2023), p. 4801.
|
[72] |
Y. Xu, N. Matsumoto, Q. Wu, Y. Shimatani, H. Kawata. Site-specific nanopatterning of functional metallic and molecular arbitrary features in nanofluidic channels. Lab Chip, 15 (9) (2015), pp. 1989-1993.
|
[73] |
T. Dufils, C. Schran, J. Chen, A.K. Geim, L. Fumagalli, A. Michaelides. Origin of dielectric polarization suppression in confined water from first principles. Chem Sci, 15 (2) (2023), p. 516.
|
[74] |
A. Hibara, T. Saito, H.B. Kim, M. Tokeshi, T. Ooi, M. Nakao, et al. Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal Chem, 74 (24) (2002), pp. 6170-6176.
|
[75] |
M. Tanaka, Y. Saeki, I. Hanasaki, Y. Kazoe. Effect of finite spatial and temporal resolutions on super-resolution particle tracking velocimetry for pressure-driven flow in a nanochannel. Microfluid Nanofluid, 28 (39) (2024), pp. 1-12.
|
[76] |
Y. Xu, B. Xu. An integrated glass nanofluidic device enabling in-situ electrokinetic probing of water confined in a single nanochannel under pressure-driven flow conditions. Small, 11 (46) (2015), pp. 6165-6171.
|
[77] |
S. Liu, Q. Pu, L. Gao, C. Korzeniewski, C. Matzke. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett, 5 (7) (2005), pp. 1389-1393.
|
[78] |
H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, et al. Enhancement of proton mobility in extended-nanospace channels. Angew Chem Int Ed, 51 (15) (2012), pp. 3573-3577.
|
[79] |
S.A. Siddiqui, M.Q.U. Farooqi, S. Bhowmik, Z. Zahra, M.M.C. Mahmud, E. Assadpour, et al. Application of micro/nano-fluidics for encapsulation of food bioactive compounds—principles, applications, and challenges. Trends Food Sci Technol, 136 (2023), pp. 64-75.
|
[80] |
L. Tang, Y. Hao, L. Peng, R. Liu, Y. Zhou, J. Li. Ion current rectification properties of non-Newtonian fluids in conical nanochannels. Phys Chem Chem Phys, 26 (4) (2024), pp. 2895-2906.
|
[81] |
T. Gamble, K. Decker, T.S. Plett, M. Pevarnik, J.F. Pietschmann, I. Vlassiouk, et al. Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling. J Phys Chem C, 118 (18) (2014), pp. 9809-9819.
|
[82] |
J.M. Perry, K. Zhou, Z.D. Harms, S.C. Jacobson. Ion transport in nanofluidic funnels. ACS Nano, 4 (7) (2010), pp. 3897-3902.
|
[83] |
S.J. Kim, S.H. Ko, K.H. Kang, J. Han. Direct seawater desalination by ion concentration polarization. Nat Nanotechnol, 5 (4) (2010), pp. 297-301.
|
[84] |
A. Syed, L. Mangano, P. Mao, J. Han, Y.A. Song. Creating sub-50 nm nanofluidic junctions in a pdms microchip via self-assembly process of colloidal silica beads for electrokinetic concentration of biomolecules. Lab Chip, 14 (23) (2014), pp. 4455-4460.
|
[85] |
S.J. Kim, Y.C. Wang, J.H. Lee, H. Jang, J. Han. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett, 99 (4) (2007), Article 044501.
|
[86] |
L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng, J. Yang, et al. Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv Funct Mater, 27 (9) (2017), p. 1604302.
|
[87] |
Y. Yang, Y.X. Ren, M. Chen, Y. Arita, C. Rosales-Guzmán. Optical trapping with structured light: a review. Adv Photonics, 3 (03) (2021), Article 034001.
|
[88] |
N. Chantipmanee, Y. Xu. Toward nanofluidics-based mass spectrometry for exploring the unknown complex and heterogeneous subcellular worlds. View, 4 (1) (2023), Article 20220036.
|
[89] |
K. Lee, R. Mishra, T. Kim. Review of micro/nanofluidic particle separation mechanisms: toward combined multiple physical fields for nanoparticles. Sens Actuators A Phys, 363 (2023), Article 114688.
|
[90] |
H. Sano, Y. Kazoe, R. Ohta, H. Shimizu, K. Morikawa, T. Kitamori. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay. Lab Chip, 23 (4) (2023), pp. 727-736.
|
[91] |
M. Yin, Z. Alexander Kim, B. Xu. Micro/nanofluidic-enabled biomedical devices: integration of structural design and manufacturing. Adv NanoBiomed Res, 2 (4) (2022), p. 2100117.
|
[92] |
M. Fränzl, F. Cichos. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat Commun, 13 (1) (2022), p. 656.
|
[93] |
L. Rassaei, K. Mathwig, S. Kang, H.A. Heering, S.G. Lemay. Integrated biodetection in a nanofluidic device. ACS Nano, 8 (8) (2014), pp. 8278-8284.
|
[94] |
Varsanik JS. Integrated optic/nanofluidic detection device with plasmonic readout. Report. Cambridge: Massachusetts Institute of Technology. 2011.
|
[95] |
H. Kawagishi, S. Funano, Y. Tanaka, Y. Xu. Flexible glass-based hybrid nanofluidic device to enable the active regulation of single-molecule flows. Nano Lett, 23 (6) (2023), pp. 2210-2218.
|
[96] |
T.H.H. Le, T. Matsushita, R. Ohta, Y. Shimoda, H. Matsui, T. Kitamori. Fabrication of infrared-compatible nanofluidic devices for plasmon-enhanced infrared absorption spectroscopy. Micromachines, 11 (12) (2020), p. 1062.
|
[97] |
A. Heydari, M. Khatibi, S.N. Ashrafizadeh. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Phys Chem Chem Phys, 25 (39) (2023), pp. 26716-26736.
|
[98] |
Y.S. Kim, B.M. Dincau, Y.T. Kwon, J.H. Kim, W.H. Yeo. Directly accessible and transferrable nanofluidic systems for biomolecule manipulation. ACS Sens, 4 (5) (2019), pp. 1417-1423.
|
[99] |
Y.J. Lu, H.Y. Hsieh, W.F. Yang, K.C. Wu, H. Tahara, P.K. Wei, et al. Co-printing of micro/nanostructures integrated with preconcentration to enhance protein detection. Microfluid Nanofluidics, 28 (1) (2024), p. 3.
|
[100] |
X. Jiang, L. Wang, S. Liu, F. Li, J. Liu. Bioinspired artificial nanochannels: construction and application. Mater Chem Front, 5 (4) (2021), pp. 1610-1631.
|
[101] |
T.H.H. Le, H. Shimizu, K. Morikawa. Advances in label-free detections for nanofluidic analytical devices. Micromachines, 11 (10) (2020), p. 885.
|
[102] |
K. Yamamoto, K. Morikawa, H. Shimizu, H. Sano, Y. Kazoe, T. Kitamori. Accelerated protein digestion and separation with picoliter volume utilizing nanofluidics. Lab Chip, 22 (6) (2022), pp. 1162-1170.
|
[103] |
Y. Huang, L. Liu, C. Luo, W. Liu, X. Lou, L. Jiang, et al. Solid-state nanochannels for bio-marker analysis. Chem Soc Rev, 52 (18) (2023), pp. 6270-6293.
|
[104] |
Y. Dong, S. Wang, L. Zhao, J. Yang, Y. Xu. Ed.), Some frontier technologies for aptamers in medical applications BT-aptamers for medical applications. Y. Dong (Ed.), Aptamers for medical applications, Springer, Singapore (2021), pp. 375-403.
|
[105] |
S. Seetasang, Y. Xu. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B, 10 (14) (2022), pp. 2323-2337.
|
[106] |
Y. Kazoe, K. Sueyoshi, S. Seetasang, Y. Xu. Nanofluidic technologies for drug screening and drug delivery. L. Lamprou (Ed.), Nano- and microfabrication techniques in drug delivery, Springer, Cham (2023), pp. 365-418.
|
[107] |
Y.L. Hu, H.S. Cui, C.M. Yu, Z.Q. Wu. Nanofluidic electrochemical sensors for clinical biomarkers detection. Microchem J, 193 (2023), Article 109058.
|
[108] |
A. Mocciaro, T.L. Roth, H.M. Bennett, M. Soumillon, A. Shah, J. Hiatt, et al. Light-activated cell identification and sorting (LACIS) for selection of edited clones on a nanofluidic device. Commun Biol, 1 (1) (2018), p. 41.
|
[109] |
H.J. Sheen, B. Panigrahi, T.R. Kuo, W.C. Hsu, P.S. Chung, Q.Z. Xie, et al. Electrochemical biosensor with electrokinetics-assisted molecular trapping for enhancing C-reactive protein detection. Biosens Bioelectron, 210 (2022), Article 114338.
|
[110] |
K. Yamamoto, N. Ota, Y. Tanaka. Nanofluidic devices and applications for biological analyses. Anal Chem, 93 (1) (2021), pp. 332-349.
|
[111] |
S. Bandyopadhyay, S. Chakraborty. Thermophoretically driven capillary transport of nanofluid in a microchannel. Adv Powder Technol, 29 (4) (2018), pp. 964-971.
|
[112] |
S. Seo, D. Ha, T. Kim. Evaporation-driven transport-control of small molecules along nanoslits. Nat Commun, 12 (1) (2021), p. 1336.
|
[113] |
N.R. Tas, J. Haneveld, H.V. Jansen, M. Elwenspoek, A. Van Den Berg. Capillary filling speed of water in nanochannels. Appl Phys Lett, 85 (15) (2004), pp. 3274-3276.
|
[114] |
C.T. Ertsgaard, D. Yoo, P.R. Christenson, D.J. Klemme, S.H. Oh. Open-channel microfluidics via resonant wireless power transfer. Nat Commun, 13 (1) (2022), p. 1869.
|
[115] |
J.H. Shin, K. Kim, H. Woo, I.S. Kang, H.W. Kang, W.S. Choi, et al. One-directional flow of ionic solutions along fine electrodes under an alternating current electric field. R Soc Open Sci, 6 (2) (2019), Article 180657.
|
[116] |
K.F. Rinne, S. Gekle, D.J. Bonthuis, R.R. Netz. Nanoscale pumping of water by AC electric fields. Nano Lett, 12 (4) (2012), pp. 1780-1783.
|
[117] |
D. Li. Electroosmotic flow and electrophoresis in nanochannels. Fluid Mech Its Appl, 133 (2023), pp. 107-147.
|
[118] |
Yeo LY, Chang HC. Electrokinetically-driven microfluidics and nanofluidics [dissertation]. Cambridge: Cambridge University Press & Assessment; 2010.
|
[119] |
S. Sbarra, L. Waquier, S. Suffit, A. Lemaître, I. Favero. Optomechanical measurement of single nanodroplet evaporation with millisecond time-resolution. Nat Commun, 13 (1) (2022), p. 6462.
|
[120] |
P. Gao, Q. Ma, D. Ding, D. Wang, X. Lou, T. Zhai, et al. Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. Nat Commun, 9 (1) (2018), p. 4557.
|
[121] |
L. Zhou, A. Eden, K.H. Chou, D.E. Huber, S. Pennathur. Nanofluidic diodes based on asymmetric bio-inspired surface coatings in straight glass nanochannels. Faraday Discuss, 246 (2023), pp. 356-369.
|
[122] |
H. Kawagishi, S. Kawamata, Y. Xu. Fabrication of nanoscale gas-liquid Interfaces in hydrophilic/hydrophobic nanopatterned nanofluidic channels. Nano Lett, 21 (24) (2021), pp. 10555-10561.
|
[123] |
J.J. Hu, W. Jiang, Y. Qiao, Q. Ma, Q. Du, J.H. Jiang, et al. Enzyme regulating the wettability of the outer surface of nanochannels. ACS Nano, 17 (12) (2023), pp. 11935-11945.
|
[124] |
S. Wang, K. Liu, X. Yao, L. Jiang. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev, 115 (16) (2015), pp. 8230-8293.
|
[125] |
Y. Si, Z. Dong. Bioinspired smart liquid directional transport control. Langmuir, 36 (3) (2020), pp. 667-681.
|
[126] |
X. Li, B. Zhang, Z. Wang, Y. Chen, J. Guo, S. Kang, et al. Confined nano-channels incorporated with multi-quaternized cations for highly phosphoric acid retention HT-PEMS. Small, 20 (22) (2024), Article 2308860.
|
[127] |
Y. Wang, T. Yun, X. Wang, B. Yao, Z. Ye, X. Peng. 2D nanochannels boosting ionic conductivity of zinc-ion “water-in-salt” electrolyte for wearable micro-supercapacitor. Mater Today Energy, 36 (2023), Article 101359.
|
[128] |
E. Angeli, C. Manneschi, L. Repetto, G. Firpo, U. Valbusa. DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp. Lab Chip, 11 (15) (2011), pp. 2625-2629.
|
[129] |
S. Kim, G.H. Kim, H. Woo, T. An, G. Lim. Fabrication of a novel nanofluidic device featuring ZnO nanochannels. ACS Omega, 5 (7) (2020), pp. 3144-3150.
|
[130] |
A. Tadimety, J.H. Molinski, J.X.J. Zhang. Chapter 45—nanotechnology for molecular diagnostics. W.B. Coleman, G.J. Tsongalis (Eds.), Diagnostic molecular pathology, Academic Press, New York (2024), pp. 731-745.
|
[131] |
Z.R. Kudrynskyi, J. Kerfoot, D. Mazumder, M.T. Greenaway, E.E. Vdovin, O. Makarovsky, et al. Resonant tunnelling into the two-dimensional subbands of InSe layers. Commun Phys, 3 (1) (2020), p. 16.
|
[132] |
S. Mittal, B. Pathak. Towards a graphene semi/hybrid-nanogap: a new architecture for ultrafast DNA sequencing. Nanoscale, 15 (2) (2023), pp. 757-767.
|
[133] |
S. Zhou, K. Chen, M.T. Cole, Z. Li, M. Li, J. Chen, et al. Ultrafast electron tunneling devices—from electric-field driven to optical-field driven. Adv Mater, 33 (35) (2021), Article 2101449.
|
[134] |
N. Yu, Y. Liu, B. Ji, S. Wang, Y. Chen, T. Sun, et al. High-sensitivity microliter blood pressure sensors based on patterned micro-nanostructure arrays. Lab Chip, 20 (9) (2020), pp. 1554-1561.
|
[135] |
Ganzeboom TV, van Es J, Formisani L. Development of a miniature heat exchanger for mechanically pumped loop systems for active thermal control of cubesats. Report. Noordwijk: European Space Thermal Engineering Workshop; 2022.
|
[136] |
S. Amin, A. Khorshid, L. Zeng, P. Zimny, W. Reisner. A nanofluidic knot factory based on compression of single DNA in nanochannels. Nat Commun, 9 (1) (2018), p. 1506.
|
[137] |
C. Wang, Y. Shi, J. Wang, J. Pang, X.H. Xia. Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching. ACS Appl Mater Interfaces, 7 (12) (2015), pp. 6835-6841.
|
[138] |
P.A. Postigo, R. Alvaro, A. Juarros, S. Merino. Optofluidic chips with nanochannels for dynamic molecular detection using enhanced fluorescence. Biomed Opt Express, 7 (9) (2016), pp. 3289-3298.
|
[139] |
W. Xin, H. Ling, Y. Cui, Y. Qian, X.Y. Kong, L. Jiang, et al. Tunable ion transport in two-dimensional nanofluidic channels. J Phys Chem Lett, 14 (3) (2023), pp. 627-636.
|
[140] |
L. Saini, S.S. Nemala, A. Rathi, S. Kaushik, G. Kalon. Selective transport of water molecules through interlayer spaces in graphite. Nat Commun, 13 (1) (2022), p. 498.
|
[141] |
R. Wu, J. Hao, Y. Cui, J. Zhou, D. Zhao, S. Zhang, et al. Multi-control of ion transport in a field-effect iontronic device based on sandwich-structured nanochannels. Adv Funct Mater, 33 (4) (2023), Article 2208095.
|
[142] |
H. Daiguji. Ion transport in nanofluidic channels. Chem Soc Rev, 39 (3) (2010), pp. 901-911.
|
[143] |
N. Qiao, Z. Zhang, Z. Liu, W. Lu, C. Li. Ion current rectification in asymmetric nanochannels: effects of nanochannel shape and surface charge. Int J Heat Mass Transf, 208 (2023), Article 124038.
|
[144] |
M. Wang, Y. Hou, L. Yu, X. Hou. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett, 20 (10) (2020), pp. 6937-6946.
|
[145] |
S. Furukawa, K. Mawatari, Y. Tsuyama, K. Morikawa, T. Kitamori. Nano-bubble valve. Microfluid Nanofluidics, 25 (3) (2021), p. 24.
|
[146] |
Y. Kazoe, Y. Pihosh, H. Takahashi, T. Ohyama, H. Sano, K. Morikawa, et al. Femtoliter nanofluidic valve utilizing glass deformation. Lab Chip, 19 (9) (2019), pp. 1686-1694.
|
[147] |
C.Z. Deng, Y.J. Fan, P.S. Chung, H.J. Sheen. A novel thermal bubble valve integrated nanofluidic preconcentrator for highly sensitive biomarker detection. ACS Sens, 3 (7) (2018), pp. 1409-1415.
|
[148] |
M. Miansari, J.R. Friend. Acoustic nanofluidics via room-temperature lithium niobate bonding: a platform for actuation and manipulation of nanoconfined fluids and particles. Adv Funct Mater, 26 (43) (2016), pp. 7861-7872.
|
[149] |
N. Zhang, A. Horesh, J. Friend. Manipulation and mixing of 200 femtoliter droplets in nanofluidic channels using MHZ-order surface acoustic waves. Adv Sci, 8 (13) (2021), Article 2100408.
|
[150] |
N. Li, Y. Pang, Z. Sun, Z. Wang, X. Sun, T. Tang, et al. Probing the coalescence mechanism of water droplet and oil/water interface in demulsification process under DC electric field. Sep Purif Technol, 326 (2023), Article 124798.
|
[151] |
K. Yamamoto, K. Morikawa, H. Imanaka, K. Imamura, T. Kitamori. Kinetics of enzymatic reactions at the solid/liquid interface in nanofluidic channels. Anal Chem, 94 (45) (2022), pp. 15686-15694.
|
[152] |
J. Yang, H. Kamai, Y. Xu. A simple chemical method to nondestructively regenerate functional nanochannels for single-molecule studies. Sens Actuators B Chem, 393 (2023), Article 134106.
|
[153] |
F. Malloggi, N. Pannacci, R. Attia, F. Monti, P. Mary, H. Willaime, et al. Monodisperse colloids synthesized with nanofluidic technology. Langmuir, 26 (4) (2010), pp. 2369-2373.
|
[154] |
Y. Kazoe, T. Ugajin, R. Ohta, K. Mawatari, T. Kitamori. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction. Lab Chip, 19 (22) (2019), pp. 3844-3852.
|
[155] |
J. Hartmann, M.T. Schür, S. Hardt. Manipulation and control of droplets on surfaces in a homogeneous electric field. Nat Commun, 13 (1) (2022), p. 289.
|
[156] |
M. Shojaeian, S. Hardt. Mass transfer via femtoliter droplets in ping—pong mode. Phys Rev Appl, 13 (1) (2020), Article 014015.
|
[157] |
M. Shojaeian, S. Hardt. Manipulation of single sub-femtolitre droplets via partial coalescence in a direct-current electric field. Flow, 1 (2021), p. E12.
|
[158] |
M. He, Y. Zhou, W. Cui, Y. Yang, H. Zhang, X. Chen, et al. An on-demand femtoliter droplet dispensing system based on a gigahertz acoustic resonator. Lab Chip, 18 (17) (2018), pp. 2540-2546.
|
[159] |
Y. Takagi, Y. Kazoe, K. Morikawa, T. Kitamori. Femtoliter-droplet mass spectrometry interface utilizing nanofluidics for ultrasmall and high-sensitivity analysis. Anal Chem, 94 (28) (2022), pp. 10074-10081.
|
[160] |
KK S, Persson F, Fritzsche J, Beech JP, Tegenfeldt JO, Westerlund F. Fluorescence microscopy of nanochannel-confined DNA. In:Heller I, Dulin D, Peterman EJG, editors. Single molecule analysis. New York: Humana Press; 2023. p. 173-98.
|
[161] |
W. Yang, B. Radha, A. Choudhary, Y. You, G. Mettela, A.K. Geim, et al. Translocation of DNA through ultrathin nanoslits. Adv Mater, 33 (11) (2021), Article 2007682.
|
[162] |
J. Rothörl, S. Wettermann, P. Virnau, A. Bhattacharya. Knot formation of dsDNA pushed inside a nanochannel. Sci Rep, 12 (1) (2022), p. 5342.
|
[163] |
R. Sharma, S. Kk, E.D. Holmstrom, F. Westerlund. Real-time compaction of nanoconfined DNA by an intrinsically disordered macromolecular counterion. Biochem Biophys Res Commun, 533 (1) (2020), pp. 175-180.
|
[164] |
Z. Ma, K.D. Dorfman. Diffusion of knots along DNA confined in nanochannels. Macromolecules, 53 (15) (2020), pp. 6461-6468.
|
[165] |
Z. Liu, S.M. Christensen, X. Capaldi, S.I. Hosseini, L. Zeng, Y. Zhang, et al. Characterizing interaction of multiple nanocavity confined plasmids in presence of large DNA model nucleoid. Soft Matter, 19 (34) (2023), pp. 6545-6555.
|
[166] |
O.E. Ström, J.P. Beech, J.O. Tegenfeldt. High-throughput separation of long DNA in deterministic lateral displacement arrays. Micromachines, 13 (10) (2022), p. 1754.
|
[167] |
R. Rusková, D. Račko. Knot formation on DNA pushed inside chiral nanochannels. Polymers, 15 (20) (2023), p. 4185.
|
[168] |
L. Zeng, W.W. Reisner. Mixing and demixing arising from compression of two semiflexible polymer chains in nanochannels. Eur Phys J E, 46 (9) (2023), p. 88.
|
[169] |
M. Yu, Y. Hou, R. Song, X. Xu, S. Yao. Tunable confinement for bridging single-cell manipulation and single-molecule DNA linearization. Small, 14 (17) (2018), Article 1800229.
|
[170] |
Y. Liu, L. Yobas. Slowing DNA translocation in a nanofluidic field-effect transistor. ACS Nano, 10 (4) (2016), pp. 3985-3994.
|
[171] |
P. Robin, N. Kavokine, L. Bocquet. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science, 373 (6555) (2021), pp. 687-691.
|
[172] |
P. Robin, T. Emmerich, A. Ismail, A. Niguès, Y. You, G.H. Nam, et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science, 379 (6628) (2023), pp. 161-167.
|
[173] |
F.M. Esmek, T. Erichlandwehr, D.H.B. Mors, M. Czech-Sioli, M. Therre, T. Günther, et al. Real time, in-line optical mapping of single molecules of DNA. Biosens Bioelectron, 9 (2021), Article 100087.
|
[174] |
R. Öz, S. KK, F. Westerlund. A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level. Nanoscale, 11 (4) (2019), pp. 2071-2078.
|
[175] |
C. Hong, S. Yang, J.C. Ndukaife. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat Nanotechnol, 15 (11) (2020), pp. 908-913.
|
[176] |
C. Höller, G. Schnoering, H. Eghlidi, M. Suomalainen, U.F. Greber, D. Poulikakos. On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids. Sci Adv, 7 (27) (2021), Article eabd8758.
|
[177] |
S. Mitra, M. Basak. Recent trends in non-reactive light driven micro/-nano propellers and rotors. Appl Mater Today, 31 (2023), Article 101748.
|
[178] |
I. Fernandez-Cuesta, M.M. West, E. Montinaro, A. Schwartzberg, S. Cabrini. A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting. Lab Chip, 19 (14) (2019), pp. 2394-2403.
|
[179] |
P. Eberle, C. Höller, P. Müller, M. Suomalainen, U.F. Greber, H. Eghlidi, et al. Single entity resolution valving of nanoscopic species in liquids. Nat Nanotechnol, 13 (7) (2018), pp. 578-582.
|
[180] |
D. Sharma, R.Y.H. Lim, T. Pfohl, Y. Ekinci. Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping. Microsyst Nanoeng, 7 (2021), p. 46.
|
[181] |
S. Levin, S. Lerch, A. Boje, J. Fritzsche, S. KK, H. Ström, et al. Nanofluidic trapping of faceted colloidal nanocrystals for parallel single-particle catalysis. ACS Nano, 16 (9) (2022), pp. 15206-15214.
|
[182] |
S. Levin, J. Fritzsche, S. Nilsson, A. Runemark, B. Dhokale, H. Ström, et al. A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat Commun, 10 (1) (2019), p. 4426.
|
[183] |
B. Altenburger, C. Andersson, S. Levin, F. Westerlund, J. Fritzsche, C. Langhammer. Label-free imaging of catalytic H2O2 decomposition on single colloidal Pt nanoparticles using nanofluidic scattering microscopy. ACS Nano, 17 (21) (2023), pp. 21030-21043.
|
[184] |
M. Rahman, M.A. Stott, Y. Li, A.R. Hawkins, H. Schmidt. Single-particle analysis with 2D electro-optical trapping on an integrated optofluidic device. Optica, 5 (10) (2018), pp. 1311-1314.
|
[185] |
N. Banterle, E.A. Lemke. Nanoscale devices for linkerless long-term single-molecule observation. Curr Opin Biotechnol, 39 (2016), pp. 105-112.
|
[186] |
S. Mahshid, M.J. Ahamed, D. Berard, S. Amin, R. Sladek, S.R. Leslie, et al. Development of a platform for single cell genomics using convex lens-induced confinement. Lab Chip, 15 (14) (2015), pp. 3013-3020.
|
[187] |
D. Sharma, R.Y.H. Lim, T. Pfohl, Y. Ekinci. Optimization of nanofluidic devices for geometry-induced electrostatic trapping. Part Part Syst Charact, 38 (2) (2021), Article 2000275.
|
[188] |
M.O. Magnasco. Forced thermal ratchets. Phys Rev Lett, 71 (10) (1993), pp. 1477-1481.
|
[189] |
J. Prost, J.F. Chauwin, L. Peliti, A. Ajdari. Asymmetric pumping of particles. Phys Rev Lett, 72 (16) (1994), pp. 2652-2655.
|
[190] |
M.J. Skaug, C. Schwemmer, S. Fringes, C.D. Rawlings, A.W. Knoll. Nanofluidic rocking brownian motors. Science, 359 (6383) (2018), pp. 1505-1508.
|
[191] |
S. Kk, Y.L. Lin, T. Sewunet, M. Wrande, L. Sandegren, C.G. Giske, et al. A parallelized nanofluidic device for high-throughput optical DNA mapping of bacterial plasmids. Micromachines, 12 (10) (2021), p. 1234.
|
[192] |
S. Hong, T.J. Moritz, C.M. Rath, P. Tamrakar, P. Lee, T. Krucker, et al. Assessing antibiotic permeability of gram-negative bacteria via nanofluidics. ACS Nano, 11 (7) (2017), pp. 6959-6967.
|
[193] |
B. Ahmed Taha, Q. Al-Jubouri, S. Chahal, Y. Al Mashhadany, S. Rustagi, V. Chaudhary, et al. State-of-the-art telemodule-enabled intelligent optical nano-biosensors for proficient SARS-COV-2 monitoring. Microchem J, 197 (2024), Article 109774.
|
[194] |
Y. Shi, Z. Li, P.Y. Liu, B.T.T. Nguyen, W. Wu, Q. Zhao, et al. On‐chip optical detection of viruses: a review. Adv Photon Res, 2 (4) (2021), Article 2000150.
|
[195] |
J. Zhou, A. Zlotnick, S.C. Jacobson. Disassembly of single virus capsids monitored in real time with multicycle resistive-pulse sensing. Anal Chem, 94 (2) (2022), pp. 985-992.
|
[196] |
A.E. Cetin, Z.A. Kocer, S.N. Topkaya, Z.A. Yazici. Handheld plasmonic biosensor for virus detection in field-settings. Sens Actuators B Chem, 344 (2021), Article 130301.
|
[197] |
Z.D. Harms, K.B. Mogensen, P.S. Nunes, K. Zhou, B.W. Hildenbrand, I. Mitra, et al. Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. Anal Chem, 83 (24) (2011), pp. 9573-9578.
|
[198] |
A. Mitra, B. Deutsch, F. Ignatovich, C. Dykes, L. Novotny. Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano, 4 (3) (2010), pp. 1305-1312.
|
[199] |
G. Ruiz-Vega, M. Soler, M.C. Estevez, P. Ramirez-Priego, M.D. Pazos, M.A. Noriega, et al. Rapid and direct quantification of the SARS-COV-2 virus with an ultrasensitive nanobody-based photonic nanosensor. Sen Diagn, 1 (1) (2022), pp. 983-993.
|
[200] |
R. Marie, M.K. Rasmussen, J.N. Pedersen. Quantifying DNA-mediated liposome fusion kinetics with a fluidic trap. Soft Matter, 19 (15) (2023), pp. 2815-2822.
|
[201] |
S. Akgönüllü, D. Çimen, I. Göktürk, G.E. Yılmaz, F. Yılmaz, A. Denizli. Chapter 12—nanodevices and nanomachines at the nanoscale biophysics. A. Denizli (Ed.), Biophysics at the nanoscale, Academic Press, New York (2023), pp. 233-261.
|
[202] |
Y. Liu, C. Xu, P. Yu, X. Chen, J. Wang, L. Mao. Counting and sizing of single vesicles/liposomes by electrochemical events. ChemElectroChem, 5 (20) (2018), pp. 2954-2962.
|
[203] |
M. Paez-Perez, I.A. Russell, P. Cicuta, L. Di Michele. Modulating membrane fusion through the design of fusogenic DNA circuits and bilayer composition. Soft Matter, 18 (37) (2022), pp. 7035-7044.
|
[204] |
G. Paramasivam, A. Sanmugam, V.V. Palem, M. Sevanan, A.B. Sairam, N. Nachiappan, et al. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: a review. Int J Biol Macromol, 254 (2024), Article 127904.
|
[205] |
Tamaoki D, Chantipmanee N, Kojima R, Xu Y. Elucidation of trapping behaviors of single exosomes in a nanofluidic device. In: Proceedings of the 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2022 Oct 23-27; Hangzhou, China. San Diego: The Chemical and Biological Microsystems Society; 2022. p. 849-50.
|
[206] |
Murata K, Chantipmanee N, Oneyama C, Kojima R, Xu Y. Relative quantification of exosomes directly from original samples by nanofluidics. In: Proceedings of the 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2022 Oct 23-27; Hangzhou, China. San Diego: The Chemical and Biological Microsystems Society; 2022. p. 921-2.
|
[207] |
Y. Hattori, T. Shimada, T. Yasui, N. Kaji, Y. Baba. Micro- and nanopillar chips for continuous separation of extracellular vesicles. Anal Chem, 91 (10) (2019), pp. 6514-6521.
|
[208] |
M.C. del Real, O. Jeanne, M. Jalali, Y. Lu, S. Mahshid. Nanostructured-based optical readouts interfaced with machine learning for identification of extracellular vesicles. Adv Healthc Mater, 12 (5) (2023), Article 2202123.
|
[209] |
S. Fujiwara, K. Morikawa, T. Endo, H. Hisamoto, K. Sueyoshi. Size sorting of exosomes by tuning the thicknesses of the electric double layers on a micro-nanofluidic device. Micromachines, 11 (5) (2020), p. 458.
|
[210] |
J. Yang, H. Kamai, Y. Wang, Y. Xu. Nanofluidic aptamer nanoarray to enable stochastic capture of single proteins at normal concentrations. Small, 19 (43) (2023), Article 2301013.
|
[211] |
J. Svirelis, Z. Adali, G. Emilsson, J. Medin, J. Andersson, R. Vattikunta, et al. Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates. Nat Commun, 14 (1) (2023), p. 5131.
|
[212] |
M. Zhang, Z.D. Harms, T. Greibe, C.A. Starr, A. Zlotnick, S.C. Jacobson. In-plane, in-series nanopores with circular cross sections for resistive-pulse sensing. ACS Nano, 16 (5) (2022), pp. 7352-7360.
|
[213] |
I.I. Hosseini, Z. Liu, X. Capaldi, T. Abdelfatah, L. Montermini, J. Rak, et al. Nanofluidics for simultaneous size and charge profiling of extracellular vesicles. Nano Lett, 21 (12) (2021), pp. 4895-4902.
|
[214] |
B. Špačková, H. Klein Moberg, J. Fritzsche, J. Tenghamn, G. Sjösten, H. Šípová-Jungová, et al. Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nat Methods, 19 (6) (2022), pp. 751-758.
|
[215] |
R. Gordon. Biosensing with nanoaperture optical tweezers. Opt Laser Technol, 109 (5) (2019), pp. 328-335.
|
[216] |
S. Mathew, R. Gordon. Self-induced back-action for aperture trapping: bethe-rayleigh theory. Opt Express, 31 (26) (2023), pp. 44190-44198.
|
[217] |
T. Jiang, L. Yi, X. Liu, A.P. Ivanov, J.B. Edel, L. Tang. Fabrication of electron tunneling probes for measuring single-protein conductance. Nat Protoc, 18 (8) (2023), pp. 2579-2599.
|
[218] |
O. Vanderpoorten, A.N. Babar, G. Krainer, R.P.B. Jacquat, P.K. Challa, Q. Peter, et al. Nanofluidic traps by two-photon fabrication for extended detection of single macromolecules and colloids in solution. ACS Appl Nano Mater, 5 (2) (2022), pp. 1995-2005.
|
[219] |
R.P.B. Jacquat, G. Krainer, Q.A.E. Peter, A.N. Babar, O. Vanderpoorten, C.K. Xu, et al. Single-molecule sizing through nanocavity confinement. Nano Lett, 23 (5) (2023), pp. 1629-1636.
|
[220] |
J. Yang, Y. Xu. Nano-in-nano integration technology for advanced fabrication of functional nanofluidic devices. Z. Yang (Ed.), Advanced MEMS/NEMS fabrication and sensorsbt, Springer, Cham (2021), pp. 111-132.
|
[221] |
J.F. Lesoine, P.A. Venkataraman, P.C. Maloney, M.E. Dumont, L. Novotny. Nanochannel-based single molecule recycling. Nano Lett, 12 (6) (2012), pp. 3273-3278.
|
[222] |
S. Ghosh, N. Karedla, I. Gregor. Single-molecule confinement with uniform electrodynamic nanofluidics. Lab Chip, 20 (17) (2020), pp. 3249-3257.
|
[223] |
C. Zhan, G. Wang, J. Yi, J.Y. Wei, Z.H. Li, Z.B. Chen, et al. Single-molecule plasmonic optical trapping. Matter, 3 (4) (2020), pp. 1350-1360.
|
[224] |
D. Shi, L. Zhou, Z. Li. Nanofluidic systems for ion transport with tunable surface charges: fabrications, characterizations, and applications. Front Lab a Chip Technol, 3 (2024), Article 1356800.
|
[225] |
Z. Zhu, D. Wang, Y. Tian, L. Jiang. Ion/molecule transportation in nanopores and nanochannels: from critical principles to diverse functions. J Am Chem Soc, 141 (22) (2019), pp. 8658-8669.
|
[226] |
C. Li, Z. Zhang, Z. Li, N. Qiao, Z. Liu, Z.Q. Tian. Electrokinetic energy conversion in nanochannels with surface charge-dependent slip. Electrochim Acta, 454 (2023), Article 142379.
|