单纳米尺度物体的纳米流体操控——当前进展、挑战与未来机遇

Nattapong Chantipmanee, Yan Xu

工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 54-71.

PDF(5058 KB)
PDF(5058 KB)
工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 54-71. DOI: 10.1016/j.eng.2024.08.021
研究论文
Review

单纳米尺度物体的纳米流体操控——当前进展、挑战与未来机遇

作者信息 +

Nanofluidic Manipulation of Single Nanometric Objects: Current Progress, Challenges, and Future Opportunities

Author information +
History +

Abstract

The manipulation of nanometric objects, encompassing both non-biological and biological objects, offers a transformative avenue for breakthroughs in diverse fields, such as chemistry, biology, chemical and biomedical engineering, materials and mechanical engineering, and various industrial applications. However, achieving accuracy, precision, and high throughput in the manipulation of nanometric objects, whether on the scale of a single nanometric entity or molecule, is a formidable challenge because of the extremely small dimensions involved. Nanofluidics has already demonstrated unique capabilities for transporting the mass of ions and small molecules at the nanoscale. We posit that chip-based nanofluidic devices provide potent strategies for the precise, accurate, and high-throughput manipulation of single nanometric entities and molecules, benefiting from their dimensions, which are comparable to those of nanometric objects. This article offers an overview of the current progress in nanofluidic manipulation of single nanometric objects. It also discusses the challenges in the development of nanofluidic manipulation technologies. Furthermore, the article explores future opportunities in the field, highlighting possible solutions to the challenges, and aims to contribute to the ongoing discourse on nanofluidic manipulation, thus propelling the field to overcome its current limitations.

Keywords

Nanochannels / Microfluidics / Single entities / Nanoparticles / DNA / Proteins / Vesicles / Viruses

引用本文

导出引用
Nattapong Chantipmanee, Yan Xu. 单纳米尺度物体的纳米流体操控——当前进展、挑战与未来机遇. Engineering. 2024, 43(12): 54-71 https://doi.org/10.1016/j.eng.2024.08.021

参考文献

[1]
J. Yang, Y. Xu. Nanofluidics for sub-single cellular studies: nascent progress, critical technologies, and future perspectives. Chin Chem Lett, 33 (6) (2022), pp. 2799-2806.
[2]
L. Chen, C. Yang, Y. Xiao, X. Yan, L. Hu, M. Eggersdorfer, et al. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Mater Today Nano, 16 (2021), Article 100136.
[3]
K. Mawatari, Y. Kazoe, H. Shimizu, Y. Pihosh, T. Kitamori. Extended-nanofluidics: fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices. Anal Chem, 86 (9) (2014), pp. 4068-4077.
[4]
D.G. Haywood, A. Saha-Shah, L.A. Baker, S.C. Jacobson. Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. Anal Chem, 87 (1) (2015), pp. 172-187.
[5]
Nature materials. Nanofluidics is on the rise. Nat Mater 2020; 19(3):253.
[6]
N. Chantipmanee, Y. Xu. Nanofluidics for chemical and biological dynamics in solution at the single molecular level. Trac Trend Anal Chem, 158 (2023), Article 116877.
[7]
Y. Xu, K. Jang, T. Yamashita, Y. Tanaka, K. Mawatari, T. Kitamori. Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics. Anal Bioanal Chem, 402 (1) (2012), pp. 99-107.
[8]
L. Bocquet, P. Tabeling. Physics and technological aspects of nanofluidics. Lab Chip, 14 (17) (2014), pp. 3143-3158.
[9]
W. Sparreboom, A. Van Den Berg, J.C.T. Eijkel. Principles and applications of nanofluidic transport. Nat Nanotechnol, 4 (11) (2009), pp. 713-720.
[10]
L. Bocquet. Nanofluidics coming of age. Nat Mater, 19 (3) (2020), pp. 254-256.
[11]
Y. Xu. Nanofluidics: a new arena for materials science. Adv Mater, 30 (3) (2018), Article 1702419.
[12]
Y. He, M. Tsutsui, Y. Zhou, X.S. Miao. Solid-state nanopore systems: from materials to applications. NPG Asia Mater, 13 (1) (2021), p. 48.
[13]
W. Ma, W. Xie, S. Fang, S. He, B. Yin, Y. Wang, et al. Nanopore electrochemical sensors for emerging hazardous pollutants detection. Electrochim Acta, 475 (2024), Article 143678.
[14]
A. Canaguier, R. Guilbaud, E. Denis, G. Magdelenat, C. Belser, B. Istace, et al. Oxford nanopore and bionano genomics technologies evaluation for plant structural variation detection. BMC Genom, 23 (1) (2022), p. 317.
[15]
M. Thakur, N. Cai, M. Zhang, Y. Teng, A. Chernev, M. Tripathi, et al. High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing. Npj 2D Mater Appl, 7 (1) (2023), p. 11.
[16]
M.K. Jena, B. Pathak. Development of an artificially intelligent nanopore for high-throughput DNA sequencing with a machine-learning-aided quantum-tunneling approach. Nano Lett, 23 (7) (2023), pp. 2511-2521.
[17]
L. Xue, H. Yamazaki, R. Ren, M. Wanunu, A.P. Ivanov, J.B. Edel. Solid-state nanopore sensors. Nat Rev Mater, 5 (12) (2020), pp. 931-951.
[18]
E. Cao, D.V. Cain, S. Silva, Z.S. Siwy. Ion concentration polarization tunes interpore interactions and transport properties of nanopore arrays. Adv Funct Mater, 34 (11) (2024), Article 2312646.
[19]
C. Koch, B. Reilly-O’Donnell, R. Gutierrez, C. Lucarelli, F.S. Ng, J. Gorelik, et al. Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers. Nat Nanotechnol, 18 (12) (2023), pp. 1483-1491.
[20]
K. Wang, S. Zhang, X. Zhou, X. Yang, X. Li, Y. Wang, et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat Methods, 21 (1) (2024), pp. 92-101.
[21]
C.W. Li, H. Merlitz, J.U. Sommer. Scaling behaviors of nanoparticle clusters that are driven through brush-decorated nanopores. Macromolecules, 56 (21) (2023), pp. 8710-8720.
[22]
J. Feng, K. Liu, M. Graf, D. Dumcenco, A. Kis, M. Di Ventra, et al. Observation of ionic coulomb blockade in nanopores. Nat Mater, 15 (8) (2016), pp. 850-855.
[23]
S. Seth, A. Rand, W. Reisner, W.B. Dunbar, R. Sladek, A. Bhattacharya. Discriminating protein tags on a dsDNA construct using a dual nanopore device. Sci Rep, 12 (1) (2022), p. 11305.
[24]
L. Ma, Z. Liu, J. Man, J. Li, Z.S. Siwy, Y. Qiu. Modulation mechanism of ionic transport through short nanopores by charged exterior surfaces. Nanoscale, 15 (46) (2023), pp. 18696-18706.
[25]
M. Malmir, M. Nejadi, R. Nejatipour, M. Dadsetani. Electronic and optical properties of bare and functionalized M2C and M2CO2 (M = Ti, Zr, Sc) MXene nanotubes: a comparative DFT study. Optik, 297 (2024), Article 171572.
[26]
G. Cui, Z. Xu, H. Li, S. Zhang, L. Xu, A. Siria, et al. Enhanced osmotic transport in individual double-walled carbon nanotube. Nat Commun, 14 (1) (2023), p. 2295.
[27]
S.I. Yamaguchi, Q. Xie, F. Ito, K. Terao, Y. Kato, M. Kuroiwa, et al. Carbon nanotube recognition by human siglec-14 provokes inflammation. Nat Nanotechnol, 18 (6) (2023), pp. 628-636.
[28]
J. Leng, T. Chang. Fluid-solid coupling for microscale transport of nanoparticles in ultralong carbon nanotubes. Thin-Walled Struct, 195 (2024), Article 111431.
[29]
E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet. Massive radius-dependent flow slippage in carbon nanotubes. Nature, 537 (7619) (2016), pp. 210-213.
[30]
Q. Jin, Y. Ren. Review on mechanics of fluid-conveying nanotubes. Int J Eng Sci, 195 (2024), Article 104007.
[31]
J. Im, Y.H. Jeong, M.C. Kim, D. Oh, J. Son, K. Hyun, et al. Wet spinning of multi-walled carbon nanotube fibers. Carbon, 216 (2024), Article 118532.
[32]
J. Tae Kim, S. Spindler, V. Sandoghdar. Scanning-aperture trapping and manipulation of single charged nanoparticles. Nat Commun, 5 (1) (2014), p. 3380.
[33]
Y. Mao, X. Tan, Y. Dou, L. He, S. Li, H. Cao, et al. Nanopipette: a high-precision portable programmable instrument for nanoliters to milliliters liquid handling. Sens Actuators A Phys, 365 (2024), Article 114876.
[34]
J. Zheng, J. Liu, J. Zhang, Y. Jiang, S. Xu, Y. Feng, et al. Dual-current signal high-sensitivity detection of telomerase using signal amplified DNA functionalized metal-organic frameworks in glass nanopipettes. Sens Actuators B Chem, 401 (2024), Article 134950.
[35]
L. Shi, A. Rana, L. Esfandiari. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors. Sci Rep, 8 (1) (2018), p. 6751.
[36]
K. Peng, N.P. Morgan, F.M. Wagner, T. Siday, C.Q. Xia, D. Dede, et al. Direct and integrating sampling in terahertz receivers from wafer-scalable inas nanowires. Nat Commun, 15 (1) (2024), p. 103.
[37]
A.H. Squires. Electrokinetic manipulation of a nanowire. Nat Nanotechnol, 18 (10) (2023), pp. 1128-1129.
[38]
N.K. Kim, K. Kim, H. Jang, T. An, H.J. Shin, G.H. Kim. Microheater with copper nanofiber network via electrospinning and electroless deposition. Sci Rep, 13 (1) (2023), p. 22248.
[39]
J.E. Escobar, J. Molina, E. Gil-Santos, J.J. Ruz, Ó. Malvar, P.M. Kosaka, et al. Nanomechanical sensing for mass flow control in nanowire-based open nanofluidic systems. ACS Nano, 17 (21) (2023), pp. 21044-21055.
[40]
S. Chen, L. Chen, Y. Zhang, D. Xu, C. Hu, L. Zhang, et al. Silver nanosheets self-assembled on polystyrene microspheres to form “hot spots” with different nanogap distances for high sensitive sers detection. Talanta, 268 (Part 1) (2024), Article 125370.
[41]
T. Ohshiro, M. Konno, A. Asai, Y. Komoto, A. Yamagata, Y. Doki, et al. Single-molecule RNA sequencing for simultaneous detection of m6A and 5mC. Sci Rep, 11 (1) (2021), p. 19304.
[42]
K. Kumar, M. Sharma, R. Pandey. First-principles study of gallenene-based nanogap architecture for DNA nucleobase identification. Mater Chem Phys, 313 (2024), Article 128686.
[43]
T. Ohshiro, Y. Komoto, M. Konno, J. Koseki, A. Asai, H. Ishii, et al. Direct analysis of incorporation of an anticancer drug into DNA at single-molecule resolution. Sci Rep, 9 (1) (2019), p. 3886.
[44]
Q. Ma, Y. Li, R. Wang, H. Xu, Q. Du, P. Gao, et al. Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface. Nat Commun, 12 (1) (2021), p. 1573.
[45]
Q. Ma, R. Wang, P. Gao, Y. Dai, F. Xia. Revealing the role of surface wettability in ionic detection signals of nanofluidic-based chemical sensors. Anal Chem, 94 (47) (2022), pp. 16411-16417.
[46]
C. Wei, Y. Zhou, X. Yang, Y. Lu, A. Wang, Y. Zhang, et al. Parallel arrays of clay nanosheets sandwiched in two-dimensional nanofluidic membrane for enhanced ion transport properties. J Membr Sci, 680 (2023), Article 121744.
[47]
K. Frykholm, V. Müller, S. Kk, K.D. Dorfman, F. Westerlund. DNA in nanochannels: theory and applications. Q Rev Biophys, 55 (2022), p. e12.
[48]
M. Liu, P.J. Weston, R.H. Hurt. Controlling nanochannel orientation and dimensions in graphene-based nanofluidic membranes. Nat Commun, 12 (1) (2021), p. 507.
[49]
F. Jia, X. Xiao, A. Nashalian, S. Shen, L. Yang, Z. Han, et al. Advances in graphene oxide membranes for water treatment. Nano Res, 15 (7) (2022), pp. 6636-6654.
[50]
Q. Ma, W. Chu, X. Nong, J. Zhao, H. Liu, Q. Du, et al. Local electric potential-driven nanofluidic ion transport for ultrasensitive biochemical sensing. ACS Nano, 18 (8) (2024), pp. 6570-6578.
[51]
W.X. Pan, L. Chen, W.Y. Li, Q. Ma, H. Xiang, N. Ma, et al. Scalable fabrication of ionic-conductive covalent organic framework fibers for capturing of sustainable osmotic energy. Adv Mater, 36 (27) (2024), p. 2401772.
[52]
D. Lei, Z. Zhang, L. Jiang. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev, 53 (5) (2024), pp. 2300-2325.
[53]
J. Tang, Y. Wang, H. Yang, Q. Zhang, C. Wang, L. Li, et al. All-natural 2D nanofluidics as highly-efficient osmotic energy generators. Nat Commun, 15 (1) (2024), p. 3649.
[54]
R. Xu, Y. Kang, W. Zhang, B. Pan, X. Zhang. Two-dimensional mxene membranes with biomimetic sub-nanochannels for enhanced cation sieving. Nat Commun, 14 (1) (2023), p. 4907.
[55]
P.P. Yan, X.C. Chen, Z.X. Liang, Y.P. Fang, J. Yao, C.X. Lu, et al. Two-dimensional nanofluidic membranes with intercalated in-plane shortcuts for high-performance blue energy harvesting. Small, 19 (4) (2023), Article 2205003.
[56]
P. Kunnas, N. De Jonge, J.P. Patterson. The effect of nanochannel length on in situ loading times of diffusion-propelled nanoparticles in liquid cell electron microscopy. Ultramicroscopy, 255 (2024), Article 113865.
[57]
Y. Xu, M. Shinomiya, A. Harada. Soft matter-regulated active nanovalves locally self-assembled in femtoliter nanofluidic channels. Adv Mater, 28 (11) (2016), pp. 2209-2216.
[58]
R. Ohta, K. Morikawa, Y. Tsuyama, T. Kitamori. Relationship between bonding strength and surface roughness in low-temperature bonding of glass for micro/nanofluidic device. J Micromech Microeng, 34 (1) (2024), Article 017002.
[59]
K. Mawatari, S. Kubota, Y. Xu, C. Priest, R. Sedev, J. Ralston, et al. Femtoliter droplet handling in nanofluidic channels: a laplace nanovalve. Anal Chem, 84 (24) (2012), pp. 10812-10816.
[60]
Tanaka Y, Kawagishi H, Chantipmanee N, Xu Y. Fabrication of attoliter droplets based on liquid/solid interfaces in nanofluidic channels. Proceedings of the 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2022 Oct 23-7; Hangzhou, China. San Diego: The Chemical and Biological Microsystems Society; 2022. p. 851-2.
[61]
N. Ronceray, M. Spina, V.H.Y. Chou, C.T. Lim, A.K. Geim, S. Garaj. Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation. Nat Commun, 15 (1) (2024), p. 185.
[62]
Y. Kazoe, S. Kubori, K. Morikawa, K. Mawatari, T. Kitamori. Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry. Anal Sci, 38 (2) (2022), pp. 281-287.
[63]
Xu Y. Bridging world-to-nanofluidics interfaces through nano-in-nano integration technology. Proceedings of the 2016 International Symposium on Micro-Nanomechatronics and Human Science NHS; 2016 Nov 28-30; Nagoya, Japan. Piscataway: IEEE; 2017. p. 2474-3771.
[64]
Z. Xu, Y.K. Li, J.Y. Wang, C. Liu, J.S. Liu, L. Chen, et al. A novel method for fabrication of micro-nanofluidic devices and its application in trace enrichment. Chin J Anal Chem, 42 (2) (2014), pp. 166-172.
[65]
F. Sima, K. Sugioka. Ultrafast laser manufacturing of nanofluidic systems. Nanophotonics, 10 (9) (2021), pp. 2389-2406.
[66]
Y. Kazoe, Y. Xu. Advances in nanofluidics. Micromachines, 12 (4) (2021), p. 427.
[67]
C. Wu, T.G. Lin, Z. Zhan, Y. Li, S.C.H. Tung, W.C. Tang, et al. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography. Microsyst Nanoeng, 3 (1) (2017), p. 16084.
[68]
A. Bhardwaj, M.V. Surmani Martins, Y. You, R. Sajja, M. Rimmer, S. Goutham, et al. Fabrication of angstrom-scale two-dimensional channels for mass transport. Nat Protoc, 19 (1) (2023), pp. 240-280.
[69]
H. Kamai, Y. Xu. Fabrication of ultranarrow nanochannels with ultrasmall nanocomponents in glass substrates. Micromachines, 12 (7) (2021), p. 775.
[70]
Y. Xu, Q. Wu, Y. Shimatani, K. Yamaguchi. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures. Lab Chip, 15 (19) (2015), pp. 3856-3861.
[71]
C. Hong, J.C. Ndukaife. Scalable trapping of single nanosized extracellular vesicles using plasmonics. Nat Commun, 14 (1) (2023), p. 4801.
[72]
Y. Xu, N. Matsumoto, Q. Wu, Y. Shimatani, H. Kawata. Site-specific nanopatterning of functional metallic and molecular arbitrary features in nanofluidic channels. Lab Chip, 15 (9) (2015), pp. 1989-1993.
[73]
T. Dufils, C. Schran, J. Chen, A.K. Geim, L. Fumagalli, A. Michaelides. Origin of dielectric polarization suppression in confined water from first principles. Chem Sci, 15 (2) (2023), p. 516.
[74]
A. Hibara, T. Saito, H.B. Kim, M. Tokeshi, T. Ooi, M. Nakao, et al. Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal Chem, 74 (24) (2002), pp. 6170-6176.
[75]
M. Tanaka, Y. Saeki, I. Hanasaki, Y. Kazoe. Effect of finite spatial and temporal resolutions on super-resolution particle tracking velocimetry for pressure-driven flow in a nanochannel. Microfluid Nanofluid, 28 (39) (2024), pp. 1-12.
[76]
Y. Xu, B. Xu. An integrated glass nanofluidic device enabling in-situ electrokinetic probing of water confined in a single nanochannel under pressure-driven flow conditions. Small, 11 (46) (2015), pp. 6165-6171.
[77]
S. Liu, Q. Pu, L. Gao, C. Korzeniewski, C. Matzke. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett, 5 (7) (2005), pp. 1389-1393.
[78]
H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, et al. Enhancement of proton mobility in extended-nanospace channels. Angew Chem Int Ed, 51 (15) (2012), pp. 3573-3577.
[79]
S.A. Siddiqui, M.Q.U. Farooqi, S. Bhowmik, Z. Zahra, M.M.C. Mahmud, E. Assadpour, et al. Application of micro/nano-fluidics for encapsulation of food bioactive compounds—principles, applications, and challenges. Trends Food Sci Technol, 136 (2023), pp. 64-75.
[80]
L. Tang, Y. Hao, L. Peng, R. Liu, Y. Zhou, J. Li. Ion current rectification properties of non-Newtonian fluids in conical nanochannels. Phys Chem Chem Phys, 26 (4) (2024), pp. 2895-2906.
[81]
T. Gamble, K. Decker, T.S. Plett, M. Pevarnik, J.F. Pietschmann, I. Vlassiouk, et al. Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling. J Phys Chem C, 118 (18) (2014), pp. 9809-9819.
[82]
J.M. Perry, K. Zhou, Z.D. Harms, S.C. Jacobson. Ion transport in nanofluidic funnels. ACS Nano, 4 (7) (2010), pp. 3897-3902.
[83]
S.J. Kim, S.H. Ko, K.H. Kang, J. Han. Direct seawater desalination by ion concentration polarization. Nat Nanotechnol, 5 (4) (2010), pp. 297-301.
[84]
A. Syed, L. Mangano, P. Mao, J. Han, Y.A. Song. Creating sub-50 nm nanofluidic junctions in a pdms microchip via self-assembly process of colloidal silica beads for electrokinetic concentration of biomolecules. Lab Chip, 14 (23) (2014), pp. 4455-4460.
[85]
S.J. Kim, Y.C. Wang, J.H. Lee, H. Jang, J. Han. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett, 99 (4) (2007), Article 044501.
[86]
L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng, J. Yang, et al. Anomalous channel-length dependence in nanofluidic osmotic energy conversion. Adv Funct Mater, 27 (9) (2017), p. 1604302.
[87]
Y. Yang, Y.X. Ren, M. Chen, Y. Arita, C. Rosales-Guzmán. Optical trapping with structured light: a review. Adv Photonics, 3 (03) (2021), Article 034001.
[88]
N. Chantipmanee, Y. Xu. Toward nanofluidics-based mass spectrometry for exploring the unknown complex and heterogeneous subcellular worlds. View, 4 (1) (2023), Article 20220036.
[89]
K. Lee, R. Mishra, T. Kim. Review of micro/nanofluidic particle separation mechanisms: toward combined multiple physical fields for nanoparticles. Sens Actuators A Phys, 363 (2023), Article 114688.
[90]
H. Sano, Y. Kazoe, R. Ohta, H. Shimizu, K. Morikawa, T. Kitamori. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay. Lab Chip, 23 (4) (2023), pp. 727-736.
[91]
M. Yin, Z. Alexander Kim, B. Xu. Micro/nanofluidic-enabled biomedical devices: integration of structural design and manufacturing. Adv NanoBiomed Res, 2 (4) (2022), p. 2100117.
[92]
M. Fränzl, F. Cichos. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat Commun, 13 (1) (2022), p. 656.
[93]
L. Rassaei, K. Mathwig, S. Kang, H.A. Heering, S.G. Lemay. Integrated biodetection in a nanofluidic device. ACS Nano, 8 (8) (2014), pp. 8278-8284.
[94]
Varsanik JS. Integrated optic/nanofluidic detection device with plasmonic readout. Report. Cambridge: Massachusetts Institute of Technology. 2011.
[95]
H. Kawagishi, S. Funano, Y. Tanaka, Y. Xu. Flexible glass-based hybrid nanofluidic device to enable the active regulation of single-molecule flows. Nano Lett, 23 (6) (2023), pp. 2210-2218.
[96]
T.H.H. Le, T. Matsushita, R. Ohta, Y. Shimoda, H. Matsui, T. Kitamori. Fabrication of infrared-compatible nanofluidic devices for plasmon-enhanced infrared absorption spectroscopy. Micromachines, 11 (12) (2020), p. 1062.
[97]
A. Heydari, M. Khatibi, S.N. Ashrafizadeh. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Phys Chem Chem Phys, 25 (39) (2023), pp. 26716-26736.
[98]
Y.S. Kim, B.M. Dincau, Y.T. Kwon, J.H. Kim, W.H. Yeo. Directly accessible and transferrable nanofluidic systems for biomolecule manipulation. ACS Sens, 4 (5) (2019), pp. 1417-1423.
[99]
Y.J. Lu, H.Y. Hsieh, W.F. Yang, K.C. Wu, H. Tahara, P.K. Wei, et al. Co-printing of micro/nanostructures integrated with preconcentration to enhance protein detection. Microfluid Nanofluidics, 28 (1) (2024), p. 3.
[100]
X. Jiang, L. Wang, S. Liu, F. Li, J. Liu. Bioinspired artificial nanochannels: construction and application. Mater Chem Front, 5 (4) (2021), pp. 1610-1631.
[101]
T.H.H. Le, H. Shimizu, K. Morikawa. Advances in label-free detections for nanofluidic analytical devices. Micromachines, 11 (10) (2020), p. 885.
[102]
K. Yamamoto, K. Morikawa, H. Shimizu, H. Sano, Y. Kazoe, T. Kitamori. Accelerated protein digestion and separation with picoliter volume utilizing nanofluidics. Lab Chip, 22 (6) (2022), pp. 1162-1170.
[103]
Y. Huang, L. Liu, C. Luo, W. Liu, X. Lou, L. Jiang, et al. Solid-state nanochannels for bio-marker analysis. Chem Soc Rev, 52 (18) (2023), pp. 6270-6293.
[104]
Y. Dong, S. Wang, L. Zhao, J. Yang, Y. Xu. Ed.), Some frontier technologies for aptamers in medical applications BT-aptamers for medical applications. Y. Dong (Ed.), Aptamers for medical applications, Springer, Singapore (2021), pp. 375-403.
[105]
S. Seetasang, Y. Xu. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B, 10 (14) (2022), pp. 2323-2337.
[106]
Y. Kazoe, K. Sueyoshi, S. Seetasang, Y. Xu. Nanofluidic technologies for drug screening and drug delivery. L. Lamprou (Ed.), Nano- and microfabrication techniques in drug delivery, Springer, Cham (2023), pp. 365-418.
[107]
Y.L. Hu, H.S. Cui, C.M. Yu, Z.Q. Wu. Nanofluidic electrochemical sensors for clinical biomarkers detection. Microchem J, 193 (2023), Article 109058.
[108]
A. Mocciaro, T.L. Roth, H.M. Bennett, M. Soumillon, A. Shah, J. Hiatt, et al. Light-activated cell identification and sorting (LACIS) for selection of edited clones on a nanofluidic device. Commun Biol, 1 (1) (2018), p. 41.
[109]
H.J. Sheen, B. Panigrahi, T.R. Kuo, W.C. Hsu, P.S. Chung, Q.Z. Xie, et al. Electrochemical biosensor with electrokinetics-assisted molecular trapping for enhancing C-reactive protein detection. Biosens Bioelectron, 210 (2022), Article 114338.
[110]
K. Yamamoto, N. Ota, Y. Tanaka. Nanofluidic devices and applications for biological analyses. Anal Chem, 93 (1) (2021), pp. 332-349.
[111]
S. Bandyopadhyay, S. Chakraborty. Thermophoretically driven capillary transport of nanofluid in a microchannel. Adv Powder Technol, 29 (4) (2018), pp. 964-971.
[112]
S. Seo, D. Ha, T. Kim. Evaporation-driven transport-control of small molecules along nanoslits. Nat Commun, 12 (1) (2021), p. 1336.
[113]
N.R. Tas, J. Haneveld, H.V. Jansen, M. Elwenspoek, A. Van Den Berg. Capillary filling speed of water in nanochannels. Appl Phys Lett, 85 (15) (2004), pp. 3274-3276.
[114]
C.T. Ertsgaard, D. Yoo, P.R. Christenson, D.J. Klemme, S.H. Oh. Open-channel microfluidics via resonant wireless power transfer. Nat Commun, 13 (1) (2022), p. 1869.
[115]
J.H. Shin, K. Kim, H. Woo, I.S. Kang, H.W. Kang, W.S. Choi, et al. One-directional flow of ionic solutions along fine electrodes under an alternating current electric field. R Soc Open Sci, 6 (2) (2019), Article 180657.
[116]
K.F. Rinne, S. Gekle, D.J. Bonthuis, R.R. Netz. Nanoscale pumping of water by AC electric fields. Nano Lett, 12 (4) (2012), pp. 1780-1783.
[117]
D. Li. Electroosmotic flow and electrophoresis in nanochannels. Fluid Mech Its Appl, 133 (2023), pp. 107-147.
[118]
Yeo LY, Chang HC. Electrokinetically-driven microfluidics and nanofluidics [dissertation]. Cambridge: Cambridge University Press & Assessment; 2010.
[119]
S. Sbarra, L. Waquier, S. Suffit, A. Lemaître, I. Favero. Optomechanical measurement of single nanodroplet evaporation with millisecond time-resolution. Nat Commun, 13 (1) (2022), p. 6462.
[120]
P. Gao, Q. Ma, D. Ding, D. Wang, X. Lou, T. Zhai, et al. Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. Nat Commun, 9 (1) (2018), p. 4557.
[121]
L. Zhou, A. Eden, K.H. Chou, D.E. Huber, S. Pennathur. Nanofluidic diodes based on asymmetric bio-inspired surface coatings in straight glass nanochannels. Faraday Discuss, 246 (2023), pp. 356-369.
[122]
H. Kawagishi, S. Kawamata, Y. Xu. Fabrication of nanoscale gas-liquid Interfaces in hydrophilic/hydrophobic nanopatterned nanofluidic channels. Nano Lett, 21 (24) (2021), pp. 10555-10561.
[123]
J.J. Hu, W. Jiang, Y. Qiao, Q. Ma, Q. Du, J.H. Jiang, et al. Enzyme regulating the wettability of the outer surface of nanochannels. ACS Nano, 17 (12) (2023), pp. 11935-11945.
[124]
S. Wang, K. Liu, X. Yao, L. Jiang. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev, 115 (16) (2015), pp. 8230-8293.
[125]
Y. Si, Z. Dong. Bioinspired smart liquid directional transport control. Langmuir, 36 (3) (2020), pp. 667-681.
[126]
X. Li, B. Zhang, Z. Wang, Y. Chen, J. Guo, S. Kang, et al. Confined nano-channels incorporated with multi-quaternized cations for highly phosphoric acid retention HT-PEMS. Small, 20 (22) (2024), Article 2308860.
[127]
Y. Wang, T. Yun, X. Wang, B. Yao, Z. Ye, X. Peng. 2D nanochannels boosting ionic conductivity of zinc-ion “water-in-salt” electrolyte for wearable micro-supercapacitor. Mater Today Energy, 36 (2023), Article 101359.
[128]
E. Angeli, C. Manneschi, L. Repetto, G. Firpo, U. Valbusa. DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp. Lab Chip, 11 (15) (2011), pp. 2625-2629.
[129]
S. Kim, G.H. Kim, H. Woo, T. An, G. Lim. Fabrication of a novel nanofluidic device featuring ZnO nanochannels. ACS Omega, 5 (7) (2020), pp. 3144-3150.
[130]
A. Tadimety, J.H. Molinski, J.X.J. Zhang. Chapter 45—nanotechnology for molecular diagnostics. W.B. Coleman, G.J. Tsongalis (Eds.), Diagnostic molecular pathology, Academic Press, New York (2024), pp. 731-745.
[131]
Z.R. Kudrynskyi, J. Kerfoot, D. Mazumder, M.T. Greenaway, E.E. Vdovin, O. Makarovsky, et al. Resonant tunnelling into the two-dimensional subbands of InSe layers. Commun Phys, 3 (1) (2020), p. 16.
[132]
S. Mittal, B. Pathak. Towards a graphene semi/hybrid-nanogap: a new architecture for ultrafast DNA sequencing. Nanoscale, 15 (2) (2023), pp. 757-767.
[133]
S. Zhou, K. Chen, M.T. Cole, Z. Li, M. Li, J. Chen, et al. Ultrafast electron tunneling devices—from electric-field driven to optical-field driven. Adv Mater, 33 (35) (2021), Article 2101449.
[134]
N. Yu, Y. Liu, B. Ji, S. Wang, Y. Chen, T. Sun, et al. High-sensitivity microliter blood pressure sensors based on patterned micro-nanostructure arrays. Lab Chip, 20 (9) (2020), pp. 1554-1561.
[135]
Ganzeboom TV, van Es J, Formisani L. Development of a miniature heat exchanger for mechanically pumped loop systems for active thermal control of cubesats. Report. Noordwijk: European Space Thermal Engineering Workshop; 2022.
[136]
S. Amin, A. Khorshid, L. Zeng, P. Zimny, W. Reisner. A nanofluidic knot factory based on compression of single DNA in nanochannels. Nat Commun, 9 (1) (2018), p. 1506.
[137]
C. Wang, Y. Shi, J. Wang, J. Pang, X.H. Xia. Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching. ACS Appl Mater Interfaces, 7 (12) (2015), pp. 6835-6841.
[138]
P.A. Postigo, R. Alvaro, A. Juarros, S. Merino. Optofluidic chips with nanochannels for dynamic molecular detection using enhanced fluorescence. Biomed Opt Express, 7 (9) (2016), pp. 3289-3298.
[139]
W. Xin, H. Ling, Y. Cui, Y. Qian, X.Y. Kong, L. Jiang, et al. Tunable ion transport in two-dimensional nanofluidic channels. J Phys Chem Lett, 14 (3) (2023), pp. 627-636.
[140]
L. Saini, S.S. Nemala, A. Rathi, S. Kaushik, G. Kalon. Selective transport of water molecules through interlayer spaces in graphite. Nat Commun, 13 (1) (2022), p. 498.
[141]
R. Wu, J. Hao, Y. Cui, J. Zhou, D. Zhao, S. Zhang, et al. Multi-control of ion transport in a field-effect iontronic device based on sandwich-structured nanochannels. Adv Funct Mater, 33 (4) (2023), Article 2208095.
[142]
H. Daiguji. Ion transport in nanofluidic channels. Chem Soc Rev, 39 (3) (2010), pp. 901-911.
[143]
N. Qiao, Z. Zhang, Z. Liu, W. Lu, C. Li. Ion current rectification in asymmetric nanochannels: effects of nanochannel shape and surface charge. Int J Heat Mass Transf, 208 (2023), Article 124038.
[144]
M. Wang, Y. Hou, L. Yu, X. Hou. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett, 20 (10) (2020), pp. 6937-6946.
[145]
S. Furukawa, K. Mawatari, Y. Tsuyama, K. Morikawa, T. Kitamori. Nano-bubble valve. Microfluid Nanofluidics, 25 (3) (2021), p. 24.
[146]
Y. Kazoe, Y. Pihosh, H. Takahashi, T. Ohyama, H. Sano, K. Morikawa, et al. Femtoliter nanofluidic valve utilizing glass deformation. Lab Chip, 19 (9) (2019), pp. 1686-1694.
[147]
C.Z. Deng, Y.J. Fan, P.S. Chung, H.J. Sheen. A novel thermal bubble valve integrated nanofluidic preconcentrator for highly sensitive biomarker detection. ACS Sens, 3 (7) (2018), pp. 1409-1415.
[148]
M. Miansari, J.R. Friend. Acoustic nanofluidics via room-temperature lithium niobate bonding: a platform for actuation and manipulation of nanoconfined fluids and particles. Adv Funct Mater, 26 (43) (2016), pp. 7861-7872.
[149]
N. Zhang, A. Horesh, J. Friend. Manipulation and mixing of 200 femtoliter droplets in nanofluidic channels using MHZ-order surface acoustic waves. Adv Sci, 8 (13) (2021), Article 2100408.
[150]
N. Li, Y. Pang, Z. Sun, Z. Wang, X. Sun, T. Tang, et al. Probing the coalescence mechanism of water droplet and oil/water interface in demulsification process under DC electric field. Sep Purif Technol, 326 (2023), Article 124798.
[151]
K. Yamamoto, K. Morikawa, H. Imanaka, K. Imamura, T. Kitamori. Kinetics of enzymatic reactions at the solid/liquid interface in nanofluidic channels. Anal Chem, 94 (45) (2022), pp. 15686-15694.
[152]
J. Yang, H. Kamai, Y. Xu. A simple chemical method to nondestructively regenerate functional nanochannels for single-molecule studies. Sens Actuators B Chem, 393 (2023), Article 134106.
[153]
F. Malloggi, N. Pannacci, R. Attia, F. Monti, P. Mary, H. Willaime, et al. Monodisperse colloids synthesized with nanofluidic technology. Langmuir, 26 (4) (2010), pp. 2369-2373.
[154]
Y. Kazoe, T. Ugajin, R. Ohta, K. Mawatari, T. Kitamori. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction. Lab Chip, 19 (22) (2019), pp. 3844-3852.
[155]
J. Hartmann, M.T. Schür, S. Hardt. Manipulation and control of droplets on surfaces in a homogeneous electric field. Nat Commun, 13 (1) (2022), p. 289.
[156]
M. Shojaeian, S. Hardt. Mass transfer via femtoliter droplets in ping—pong mode. Phys Rev Appl, 13 (1) (2020), Article 014015.
[157]
M. Shojaeian, S. Hardt. Manipulation of single sub-femtolitre droplets via partial coalescence in a direct-current electric field. Flow, 1 (2021), p. E12.
[158]
M. He, Y. Zhou, W. Cui, Y. Yang, H. Zhang, X. Chen, et al. An on-demand femtoliter droplet dispensing system based on a gigahertz acoustic resonator. Lab Chip, 18 (17) (2018), pp. 2540-2546.
[159]
Y. Takagi, Y. Kazoe, K. Morikawa, T. Kitamori. Femtoliter-droplet mass spectrometry interface utilizing nanofluidics for ultrasmall and high-sensitivity analysis. Anal Chem, 94 (28) (2022), pp. 10074-10081.
[160]
KK S, Persson F, Fritzsche J, Beech JP, Tegenfeldt JO, Westerlund F. Fluorescence microscopy of nanochannel-confined DNA. In:Heller I, Dulin D, Peterman EJG, editors. Single molecule analysis. New York: Humana Press; 2023. p. 173-98.
[161]
W. Yang, B. Radha, A. Choudhary, Y. You, G. Mettela, A.K. Geim, et al. Translocation of DNA through ultrathin nanoslits. Adv Mater, 33 (11) (2021), Article 2007682.
[162]
J. Rothörl, S. Wettermann, P. Virnau, A. Bhattacharya. Knot formation of dsDNA pushed inside a nanochannel. Sci Rep, 12 (1) (2022), p. 5342.
[163]
R. Sharma, S. Kk, E.D. Holmstrom, F. Westerlund. Real-time compaction of nanoconfined DNA by an intrinsically disordered macromolecular counterion. Biochem Biophys Res Commun, 533 (1) (2020), pp. 175-180.
[164]
Z. Ma, K.D. Dorfman. Diffusion of knots along DNA confined in nanochannels. Macromolecules, 53 (15) (2020), pp. 6461-6468.
[165]
Z. Liu, S.M. Christensen, X. Capaldi, S.I. Hosseini, L. Zeng, Y. Zhang, et al. Characterizing interaction of multiple nanocavity confined plasmids in presence of large DNA model nucleoid. Soft Matter, 19 (34) (2023), pp. 6545-6555.
[166]
O.E. Ström, J.P. Beech, J.O. Tegenfeldt. High-throughput separation of long DNA in deterministic lateral displacement arrays. Micromachines, 13 (10) (2022), p. 1754.
[167]
R. Rusková, D. Račko. Knot formation on DNA pushed inside chiral nanochannels. Polymers, 15 (20) (2023), p. 4185.
[168]
L. Zeng, W.W. Reisner. Mixing and demixing arising from compression of two semiflexible polymer chains in nanochannels. Eur Phys J E, 46 (9) (2023), p. 88.
[169]
M. Yu, Y. Hou, R. Song, X. Xu, S. Yao. Tunable confinement for bridging single-cell manipulation and single-molecule DNA linearization. Small, 14 (17) (2018), Article 1800229.
[170]
Y. Liu, L. Yobas. Slowing DNA translocation in a nanofluidic field-effect transistor. ACS Nano, 10 (4) (2016), pp. 3985-3994.
[171]
P. Robin, N. Kavokine, L. Bocquet. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science, 373 (6555) (2021), pp. 687-691.
[172]
P. Robin, T. Emmerich, A. Ismail, A. Niguès, Y. You, G.H. Nam, et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science, 379 (6628) (2023), pp. 161-167.
[173]
F.M. Esmek, T. Erichlandwehr, D.H.B. Mors, M. Czech-Sioli, M. Therre, T. Günther, et al. Real time, in-line optical mapping of single molecules of DNA. Biosens Bioelectron, 9 (2021), Article 100087.
[174]
R. Öz, S. KK, F. Westerlund. A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level. Nanoscale, 11 (4) (2019), pp. 2071-2078.
[175]
C. Hong, S. Yang, J.C. Ndukaife. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat Nanotechnol, 15 (11) (2020), pp. 908-913.
[176]
C. Höller, G. Schnoering, H. Eghlidi, M. Suomalainen, U.F. Greber, D. Poulikakos. On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids. Sci Adv, 7 (27) (2021), Article eabd8758.
[177]
S. Mitra, M. Basak. Recent trends in non-reactive light driven micro/-nano propellers and rotors. Appl Mater Today, 31 (2023), Article 101748.
[178]
I. Fernandez-Cuesta, M.M. West, E. Montinaro, A. Schwartzberg, S. Cabrini. A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting. Lab Chip, 19 (14) (2019), pp. 2394-2403.
[179]
P. Eberle, C. Höller, P. Müller, M. Suomalainen, U.F. Greber, H. Eghlidi, et al. Single entity resolution valving of nanoscopic species in liquids. Nat Nanotechnol, 13 (7) (2018), pp. 578-582.
[180]
D. Sharma, R.Y.H. Lim, T. Pfohl, Y. Ekinci. Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping. Microsyst Nanoeng, 7 (2021), p. 46.
[181]
S. Levin, S. Lerch, A. Boje, J. Fritzsche, S. KK, H. Ström, et al. Nanofluidic trapping of faceted colloidal nanocrystals for parallel single-particle catalysis. ACS Nano, 16 (9) (2022), pp. 15206-15214.
[182]
S. Levin, J. Fritzsche, S. Nilsson, A. Runemark, B. Dhokale, H. Ström, et al. A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat Commun, 10 (1) (2019), p. 4426.
[183]
B. Altenburger, C. Andersson, S. Levin, F. Westerlund, J. Fritzsche, C. Langhammer. Label-free imaging of catalytic H2O2 decomposition on single colloidal Pt nanoparticles using nanofluidic scattering microscopy. ACS Nano, 17 (21) (2023), pp. 21030-21043.
[184]
M. Rahman, M.A. Stott, Y. Li, A.R. Hawkins, H. Schmidt. Single-particle analysis with 2D electro-optical trapping on an integrated optofluidic device. Optica, 5 (10) (2018), pp. 1311-1314.
[185]
N. Banterle, E.A. Lemke. Nanoscale devices for linkerless long-term single-molecule observation. Curr Opin Biotechnol, 39 (2016), pp. 105-112.
[186]
S. Mahshid, M.J. Ahamed, D. Berard, S. Amin, R. Sladek, S.R. Leslie, et al. Development of a platform for single cell genomics using convex lens-induced confinement. Lab Chip, 15 (14) (2015), pp. 3013-3020.
[187]
D. Sharma, R.Y.H. Lim, T. Pfohl, Y. Ekinci. Optimization of nanofluidic devices for geometry-induced electrostatic trapping. Part Part Syst Charact, 38 (2) (2021), Article 2000275.
[188]
M.O. Magnasco. Forced thermal ratchets. Phys Rev Lett, 71 (10) (1993), pp. 1477-1481.
[189]
J. Prost, J.F. Chauwin, L. Peliti, A. Ajdari. Asymmetric pumping of particles. Phys Rev Lett, 72 (16) (1994), pp. 2652-2655.
[190]
M.J. Skaug, C. Schwemmer, S. Fringes, C.D. Rawlings, A.W. Knoll. Nanofluidic rocking brownian motors. Science, 359 (6383) (2018), pp. 1505-1508.
[191]
S. Kk, Y.L. Lin, T. Sewunet, M. Wrande, L. Sandegren, C.G. Giske, et al. A parallelized nanofluidic device for high-throughput optical DNA mapping of bacterial plasmids. Micromachines, 12 (10) (2021), p. 1234.
[192]
S. Hong, T.J. Moritz, C.M. Rath, P. Tamrakar, P. Lee, T. Krucker, et al. Assessing antibiotic permeability of gram-negative bacteria via nanofluidics. ACS Nano, 11 (7) (2017), pp. 6959-6967.
[193]
B. Ahmed Taha, Q. Al-Jubouri, S. Chahal, Y. Al Mashhadany, S. Rustagi, V. Chaudhary, et al. State-of-the-art telemodule-enabled intelligent optical nano-biosensors for proficient SARS-COV-2 monitoring. Microchem J, 197 (2024), Article 109774.
[194]
Y. Shi, Z. Li, P.Y. Liu, B.T.T. Nguyen, W. Wu, Q. Zhao, et al. On‐chip optical detection of viruses: a review. Adv Photon Res, 2 (4) (2021), Article 2000150.
[195]
J. Zhou, A. Zlotnick, S.C. Jacobson. Disassembly of single virus capsids monitored in real time with multicycle resistive-pulse sensing. Anal Chem, 94 (2) (2022), pp. 985-992.
[196]
A.E. Cetin, Z.A. Kocer, S.N. Topkaya, Z.A. Yazici. Handheld plasmonic biosensor for virus detection in field-settings. Sens Actuators B Chem, 344 (2021), Article 130301.
[197]
Z.D. Harms, K.B. Mogensen, P.S. Nunes, K. Zhou, B.W. Hildenbrand, I. Mitra, et al. Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. Anal Chem, 83 (24) (2011), pp. 9573-9578.
[198]
A. Mitra, B. Deutsch, F. Ignatovich, C. Dykes, L. Novotny. Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano, 4 (3) (2010), pp. 1305-1312.
[199]
G. Ruiz-Vega, M. Soler, M.C. Estevez, P. Ramirez-Priego, M.D. Pazos, M.A. Noriega, et al. Rapid and direct quantification of the SARS-COV-2 virus with an ultrasensitive nanobody-based photonic nanosensor. Sen Diagn, 1 (1) (2022), pp. 983-993.
[200]
R. Marie, M.K. Rasmussen, J.N. Pedersen. Quantifying DNA-mediated liposome fusion kinetics with a fluidic trap. Soft Matter, 19 (15) (2023), pp. 2815-2822.
[201]
S. Akgönüllü, D. Çimen, I. Göktürk, G.E. Yılmaz, F. Yılmaz, A. Denizli. Chapter 12—nanodevices and nanomachines at the nanoscale biophysics. A. Denizli (Ed.), Biophysics at the nanoscale, Academic Press, New York (2023), pp. 233-261.
[202]
Y. Liu, C. Xu, P. Yu, X. Chen, J. Wang, L. Mao. Counting and sizing of single vesicles/liposomes by electrochemical events. ChemElectroChem, 5 (20) (2018), pp. 2954-2962.
[203]
M. Paez-Perez, I.A. Russell, P. Cicuta, L. Di Michele. Modulating membrane fusion through the design of fusogenic DNA circuits and bilayer composition. Soft Matter, 18 (37) (2022), pp. 7035-7044.
[204]
G. Paramasivam, A. Sanmugam, V.V. Palem, M. Sevanan, A.B. Sairam, N. Nachiappan, et al. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: a review. Int J Biol Macromol, 254 (2024), Article 127904.
[205]
Tamaoki D, Chantipmanee N, Kojima R, Xu Y. Elucidation of trapping behaviors of single exosomes in a nanofluidic device. In: Proceedings of the 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2022 Oct 23-27; Hangzhou, China. San Diego: The Chemical and Biological Microsystems Society; 2022. p. 849-50.
[206]
Murata K, Chantipmanee N, Oneyama C, Kojima R, Xu Y. Relative quantification of exosomes directly from original samples by nanofluidics. In: Proceedings of the 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2022 Oct 23-27; Hangzhou, China. San Diego: The Chemical and Biological Microsystems Society; 2022. p. 921-2.
[207]
Y. Hattori, T. Shimada, T. Yasui, N. Kaji, Y. Baba. Micro- and nanopillar chips for continuous separation of extracellular vesicles. Anal Chem, 91 (10) (2019), pp. 6514-6521.
[208]
M.C. del Real, O. Jeanne, M. Jalali, Y. Lu, S. Mahshid. Nanostructured-based optical readouts interfaced with machine learning for identification of extracellular vesicles. Adv Healthc Mater, 12 (5) (2023), Article 2202123.
[209]
S. Fujiwara, K. Morikawa, T. Endo, H. Hisamoto, K. Sueyoshi. Size sorting of exosomes by tuning the thicknesses of the electric double layers on a micro-nanofluidic device. Micromachines, 11 (5) (2020), p. 458.
[210]
J. Yang, H. Kamai, Y. Wang, Y. Xu. Nanofluidic aptamer nanoarray to enable stochastic capture of single proteins at normal concentrations. Small, 19 (43) (2023), Article 2301013.
[211]
J. Svirelis, Z. Adali, G. Emilsson, J. Medin, J. Andersson, R. Vattikunta, et al. Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates. Nat Commun, 14 (1) (2023), p. 5131.
[212]
M. Zhang, Z.D. Harms, T. Greibe, C.A. Starr, A. Zlotnick, S.C. Jacobson. In-plane, in-series nanopores with circular cross sections for resistive-pulse sensing. ACS Nano, 16 (5) (2022), pp. 7352-7360.
[213]
I.I. Hosseini, Z. Liu, X. Capaldi, T. Abdelfatah, L. Montermini, J. Rak, et al. Nanofluidics for simultaneous size and charge profiling of extracellular vesicles. Nano Lett, 21 (12) (2021), pp. 4895-4902.
[214]
B. Špačková, H. Klein Moberg, J. Fritzsche, J. Tenghamn, G. Sjösten, H. Šípová-Jungová, et al. Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nat Methods, 19 (6) (2022), pp. 751-758.
[215]
R. Gordon. Biosensing with nanoaperture optical tweezers. Opt Laser Technol, 109 (5) (2019), pp. 328-335.
[216]
S. Mathew, R. Gordon. Self-induced back-action for aperture trapping: bethe-rayleigh theory. Opt Express, 31 (26) (2023), pp. 44190-44198.
[217]
T. Jiang, L. Yi, X. Liu, A.P. Ivanov, J.B. Edel, L. Tang. Fabrication of electron tunneling probes for measuring single-protein conductance. Nat Protoc, 18 (8) (2023), pp. 2579-2599.
[218]
O. Vanderpoorten, A.N. Babar, G. Krainer, R.P.B. Jacquat, P.K. Challa, Q. Peter, et al. Nanofluidic traps by two-photon fabrication for extended detection of single macromolecules and colloids in solution. ACS Appl Nano Mater, 5 (2) (2022), pp. 1995-2005.
[219]
R.P.B. Jacquat, G. Krainer, Q.A.E. Peter, A.N. Babar, O. Vanderpoorten, C.K. Xu, et al. Single-molecule sizing through nanocavity confinement. Nano Lett, 23 (5) (2023), pp. 1629-1636.
[220]
J. Yang, Y. Xu. Nano-in-nano integration technology for advanced fabrication of functional nanofluidic devices. Z. Yang (Ed.), Advanced MEMS/NEMS fabrication and sensorsbt, Springer, Cham (2021), pp. 111-132.
[221]
J.F. Lesoine, P.A. Venkataraman, P.C. Maloney, M.E. Dumont, L. Novotny. Nanochannel-based single molecule recycling. Nano Lett, 12 (6) (2012), pp. 3273-3278.
[222]
S. Ghosh, N. Karedla, I. Gregor. Single-molecule confinement with uniform electrodynamic nanofluidics. Lab Chip, 20 (17) (2020), pp. 3249-3257.
[223]
C. Zhan, G. Wang, J. Yi, J.Y. Wei, Z.H. Li, Z.B. Chen, et al. Single-molecule plasmonic optical trapping. Matter, 3 (4) (2020), pp. 1350-1360.
[224]
D. Shi, L. Zhou, Z. Li. Nanofluidic systems for ion transport with tunable surface charges: fabrications, characterizations, and applications. Front Lab a Chip Technol, 3 (2024), Article 1356800.
[225]
Z. Zhu, D. Wang, Y. Tian, L. Jiang. Ion/molecule transportation in nanopores and nanochannels: from critical principles to diverse functions. J Am Chem Soc, 141 (22) (2019), pp. 8658-8669.
[226]
C. Li, Z. Zhang, Z. Li, N. Qiao, Z. Liu, Z.Q. Tian. Electrokinetic energy conversion in nanochannels with surface charge-dependent slip. Electrochim Acta, 454 (2023), Article 142379.
PDF(5058 KB)

Accesses

Citation

Detail

段落导航
相关文章

/