[1] |
P. Courpron, P. Meunier, G. Vignon. Dynamics of bone remodeling explained by Harold Frost. Theory of the B. M.U. Nouv Presse Med, 4 (6) (1975), pp. 421-424.
|
[2] |
L. Wang, X. You, L. Zhang, C. Zhang, W. Zou. Mechanical regulation of bone remodeling. Bone Res, 10 (1) (2022), p. 16.
|
[3] |
E. Lau, S. Al-Dujaili, A. Guenther, D. Liu, L. Wang, L. You. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. Bone, 46 (6) (2010), pp. 1508-1515.
|
[4] |
Y. Sun, B. Wan, R. Wang, B. Zhang, P. Luo, D. Wang, et al. Mechanical stimulation on mesenchymal stem cells and surrounding microenvironments in bone regeneration: regulations and applications. Front Cell Dev Biol, 10 (2022), Article 808303.
|
[5] |
D.M. Patton, E.M.R. Bigelow, S.H. Schlecht, D.H. Kohn, T.L. Bredbenner, K.J. Jepsen. The relationship between whole bone stiffness and strength is age and sex dependent. J Biomech, 83 (2019), pp. 125-133.
|
[6] |
X. Yi, L.E. Wright, G.M. Pagnotti, G. Uzer, K.M. Powell, J.M. Wallace, et al. Mechanical suppression of breast cancer cell invasion and paracrine signaling to osteoclasts requires nucleo-cytoskeletal connectivity. Bone Res, 8 (1) (2020), p. 40.
|
[7] |
X. Song, C.Y. Lin, X. Mei, L. Wang, L. You. Reduction of breast cancer extravasation via vibration activated osteocyte regulation. Science, 25 (12) (2022), Article 105500.
|
[8] |
S. Liu, X. Sun, K. Li, R. Zha, Y. Feng, T. Sano, et al. Generation of the tumor-suppressive secretome from tumor cells. Theranostics, 11 (17) (2021), pp. 8517-8534.
|
[9] |
X. Sun, K. Li, U.K. Aryal, B.Y. Li, H. Yokota. PI3K-activated MSC proteomes inhibit mammary tumors via Hsp90ab1 and Myh9. Mol Ther Oncolytics, 26 (2022), pp. 360-371.
|
[10] |
K. Li, X. Sun, R. Zha, S. Liu, Y. Feng, T. Sano, et al. Counterintuitive production of tumor-suppressive secretomes from Oct4- and c-Myc-overexpressing tumor cells and MSCs. Theranostics, 12 (7) (2022), pp. 3084-3103.
|
[11] |
A.D. Waldman, J.M. Fritz, M.J. Lenardo. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol, 20 (11) (2020), pp. 651-668.
|
[12] |
W.K. Decker, R.F. da Silva, M.H. Sanabria, L.S. Angelo, F. Guimaraes, B.M. Burt, et al. Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol, 8 (2017), p. 829.
|
[13] |
V. Leko, S.A. Rosenberg. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell, 38 (4) (2020), pp. 454-472.
|
[14] |
K. Lei, A. Kurum, L. Tang. Mechanical immunoengineering of T cells for therapeutic applications. Acc Chem Res, 53 (12) (2020), pp. 2777-2790.
|
[15] |
M. Huse. Mechanical forces in the immune system. Nat Rev Immunol, 17 (11) (2017), pp. 679-690.
|
[16] |
K. Li, X. Sun, H. Li, H. Ma, M. Zhou, K. Minami, et al. Suppression of osteosarcoma progression by engineered lymphocyte-derived proteomes. Genes Dis, 10 (4) (2023), pp. 1641-1656.
|
[17] |
K. Li, X. Sun, K. Minami, K. Tamari, K. Ogawa, H. Li, et al. Proteomes from AMPK-inhibited peripheral blood mononuclear cells suppress the progression of breast cancer and bone metastasis. Theranostics, 13 (4) (2023), pp. 1247-1263.
|
[18] |
M.L. Lombardi, J. Lammerding. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem Soc Trans, 39 (6) (2011), pp. 1729-1734.
|
[19] |
Q. Liu, N. Pante, T. Misteli, M. Elsagga, M. Crisp, D. Hodzic, et al. Functional association of Sun 1 with nuclear pore complexes. J Cell Biol, 178 (5) (2007), pp. 785-798.
|
[20] |
X. Sun, K. Li, R. Zha, S. Liu, Y. Fan, D. Wu, et al. Preventing tumor progression to the bone by induced tumor-suppressing MSCs. Theranostics, 11 (11) (2021), pp. 5143-5159.
|
[21] |
X. Xiong, Q. Huo, K. Li, C. Cui, C. Chang, C. Park, et al. Enhancing anti-tumor potential: low-intensity vibration suppresses osteosarcoma progression and augments MSCs’ tumor-suppressive abilities. Theranostics, 14 (4) (2024), pp. 1430-1449.
|
[22] |
S. Dasari, S. Njiki, A. Mbemi, C.G. Yedjou, P.B. Tchounwou. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int J Mol Sci, 23 (3) (2022), p. 1532.
|
[23] |
F. Tao, K. Kitamura, S. Hanada, K. Sugimoto, T. Furihata, N. Kojima. Rapid and stable formation method of human astrocyte spheroid in a high viscous methylcellulose medium and its functional advantages. Bioengineering, 10 (3) (2023), p. 349.
|
[24] |
S. Vimalraj. Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene, 754 (2020), Article 144855.
|
[25] |
B.F. Boyce, L. Xing. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther, 9 (Suppl 1) (2007), p. S1.
|
[26] |
G.M. Pagnotti, B.J. Adler, D.E. Green, M.E. Chan, D.M. Frechette, K.R. Shroyer, et al. Low magnitude mechanical signals mitigate osteopenia without compromising longevity in an aged murine model of spontaneous granulosa cell ovarian cancer. Bone, 51 (3) (2012), pp. 570-577.
|
[27] |
G.M. Pagnotti, M.E. Chan, B.J. Adler, K.R. Shroyer, J. Rubin, S.D. Bain, et al. Low intensity vibration mitigates tumor progression and protects bone quantity and quality in a murine model of myeloma. Bone, 90 (2016), pp. 69-79.
|
[28] |
M. Olcum, E. Ozcivici. Daily application of low magnitude mechanical stimulus inhibits the growth of MDA-MB-231 breast cancer cells in vitro. Cancer Cell Int, 14 (1) (2014), p. 102.
|
[29] |
N. Bufi, M. Saitakis, S. Dogniaux, O. Buschinger, A. Bohineust, A. Richert, et al. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys J, 108 (9) (2015), pp. 2181-2190.
|
[30] |
I. Irshad, P. Varamini. Different targeting strategies for treating breast cancer bone metastases. Curr Pharm Des, 24 (28) (2018), pp. 3320-3331.
|
[31] |
Z. Eshhar, T. Waks, G. Gross, D.G. Schindler. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA, 90 (2) (1993), pp. 720-724.
|
[32] |
F. Marofi, R. Motavalli, V.A. Safonov, L. Thangavelu, A.V. Yumashev, M. Alexander, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther, 12 (1) (2021), p. 81.
|
[33] |
D. Gumber, L.D. Wang. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine, 77 (2022), Article 103941.
|
[34] |
R.G. Majzner, C.L. Mackall. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med, 25 (9) (2019), pp. 1341-1355.
|
[35] |
C.U. Louis, B. Savoldo, G. Dotti, M. Pule, E. Yvon, G.D. Myers, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood, 118 (23) (2011), pp. 6050-6056.
|
[36] |
D.N. Simon, K.L. Wilson. The nucleoskeleton as a genome-associated dynamic ‘network of networks’. Nat Rev Mol Cell Biol, 12 (11) (2011), pp. 695-708.
|
[37] |
G. Uzer, G. Bas, B. Sen, Z. Xie, S. Birks, M. Olcum, et al. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates betacatenin nuclear access. J Biomech, 74 (2018), pp. 32-40.
|
[38] |
M. Crisp, Q. Liu, K. Roux, J.B. Rattner, C. Shanahan, B. Burke, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol, 172 (1) (2006), pp. 41-53.
|
[39] |
G. Uzer, W.R. Thompson, B. Sen, Z. Xie, S.S. Yen, S. Miller, et al. Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. Stem Cells, 33 (6) (2015), pp. 2063-2076.
|
[40] |
Y.J. Li, N.N. Batra, L. You, S.C. Meier, I.A. Coe, C.E. Yellowley, et al. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res, 22 (6) (2004), pp. 1283-1289.
|
[41] |
C. Ma, B. Geng, X. Zhang, R. Li, X. Yang, Y. Xia. Fluid shear stress suppresses osteoclast differentiation in RAW264.7 cells through extracellular signal-regulated kinase 5 (ERK5) signaling pathway. Med Sci Monit, 26 (2020), Article e918370.
|
[42] |
L.F. Bonewald. Mechanosensation and transduction in osteocytes. Bonekey Osteovision, 3 (10) (2006), pp. 7-15.
|