环境负载效应建模及其对GNSS坐标时间序列非线性变化贡献的最新进展与未来展望

Zhao Li, Weiping Jiang, Tonie van Dam, Xiaowei Zou, Qusen Chen, Hua Chen

工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 26-37.

PDF(478 KB)
PDF(478 KB)
工程(英文) ›› 2025, Vol. 47 ›› Issue (4) : 26-37. DOI: 10.1016/j.eng.2024.09.001
研究论文
Review

环境负载效应建模及其对GNSS坐标时间序列非线性变化贡献的最新进展与未来展望

作者信息 +

A Review on Modeling Environmental Loading Effects and Their Contributions to Nonlinear Variations of Global Navigation Satellite System Coordinate Time Series

Author information +
History +

摘要

全球导航卫星系统(GNSS)基准站坐标时间序列的非线性变化与包括大气、水文及非潮汐海洋负载在内的环境负载效应造成的地表位移密切相关。随着地表质量产品精度、地球模型性能的持续提升及精密数据处理技术的不断发展,环境负载效应对GNSS坐标时间序列非线性变化影响的研究取得了显著进展。然而,理论研究的局限性、高时空分辨率地表质量观测数据的缺乏及GNSS技术类系统误差的耦合,导致环境负载位移与基准站非线性位移之间仍然存在不一致,环境负载产品针对不同区域的适用性和性能同样亟需进一步评估。本文阐述了环境负载建模方法,地表质量分布产品及环境负载服务机构,总结了近年来环境负载应用于全球及区域GNSS坐标时间序列非线性变化研究的最新进展,凝练了现有研究存在的科学问题并展望了未来发展方向。基准站复杂非线性运动是限制当前大地坐标框架精度的主要因素之一,进一步优化环境负载建模方法,建立高时空分辨率、高可靠性的地表质量分布产品,探索冰盖和人类活动导致的地表质量变化等其他环境负载因素,建立最优数据处理模型及策略应用于全球基准站数据一致性重处理,有助于构建具有实际物理意义的毫米级基准站非线性运动模型,为本世纪中叶实现1毫米级地球参考框架建立提供理论支持。

Abstract

Nonlinear variations in the coordinate time series of global navigation satellite system (GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects, including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.

关键词

环境负载 / 全球导航卫星系统 / 非线性变化 / 时间序列分析 / 地表质量分布 / 格林函数 / 球谐函数

Keywords

Environmental loading / Global navigation satellite system / Nonlinear variations / Time series analysis / Surface mass distribution / Green’s function / Spherical harmonic function

引用本文

导出引用
Zhao Li, Weiping Jiang, Tonie van Dam. 环境负载效应建模及其对GNSS坐标时间序列非线性变化贡献的最新进展与未来展望. Engineering. 2025, 47(4): 26-37 https://doi.org/10.1016/j.eng.2024.09.001

参考文献

[1]
Jiang W, Wang K, Li Z, Zhou XH, Ma YF, Ma J.Prospect and theory of GNSS coordinate time series analysis.Geomatics Inf Sci Wuhan Univ 2018; 43(12):2112-2123.
[2]
Blewitt G, Lavall Dée, Clarke P, Nurutdinov K.A new global mode of Earth deformation: seasonal cycle detected.Science 2001; 294(5550):2342-2345.
[3]
Blewitt G, Lavallée D.Effect of annual signals on geodetic velocity.J Geophys Res 2002;107(B7):ET G 9-1–11.
[4]
Tregoning P, van T Dam.Atmospheric pressure loading corrections applied to GPS data at the observation level.Geophys Res Lett 2005; 32(22):L22310.
[5]
Tregoning P, van T Dam.Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations.J Geophys Res 2005; 110(B3):B03408.
[6]
Li Z, van T Dam, Collilieux X, Altamimi Z, Rebischung P, Nahmani S.Quality evaluation of the weekly vertical loading effects induced from continental water storage models.C. Rizos, P. Willis (Eds.), Proceedings of the IAG 150 Years—International Association of Geodesy Symposia; 2013 Sep 1–6; Potsdam, Germany, Springer, Cham 2015; 45-54.
[7]
Li Z, Chen W, van T Dam, Rebischung P, Altamimi Z.Comparative analysis of different atmospheric surface pressure models and their impacts on daily ITRF2014 GNSS residual time series.J Geod 2020; 94(4):42.
[8]
Zhang B, Liu L, Khan SA, van T Dam, Zhang E, Yao Y.Transient variations in glacial mass near Upernavik Isstrøm (west Greenland) detected by the combined use of GPS and GRACE data.J Geophys Res Solid Earth 2017; 122(12):10626-10642.
[9]
Lei J, Chen W, Li Z, Li F, Zhang S.A full-spectrum bedrock thermal expansion model and its impact on the Global Positioning System height time series.Geophys Res Lett 2020; 47(1):e2019GL086022.
[10]
Wang M, Shen Z, Dong D.Effects of non-tectonic crustal deformation on continuous GPS position time series and correction to them.Chin J Geophys 2005; 48(5):1045-1052.
[11]
Van T Dam, Blewitt G, Heflin MB.Atmospheric pressure loading effects on Global Positioning System coordinate determinations.J Geophys Res Solid Earth 1994; 99(B12):23939-23950.
[12]
Van T Dam, Altamimi Z, Collilieux X, Ray J.Topographically induced height errors in predicted atmospheric loading effects.J Geophys Res, 115 (B7) (2010), p. B07415
[13]
Dong D, Fang P, Bock Y, Chen MK, Miyazaki S.Anatomy of apparent seasonal variations from GPS-derived site position time series.J Geophys Res Solid Earth 2002;107(B4):ET G 9-1–16.
[14]
Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J.Detecting hydrologic deformation using GRACE and GPS.Geophys Res Lett 2009; 36(15):L15401.
[15]
Jiang W, Li Z, van T Dam, Ding W.Comparative analysis of different environmental loading methods and their impacts on the GPS height time series.J Geod 2013; 87(7):687-703.
[16]
Williams SDP, Penna NT.Non-tidal ocean loading effects on geodetic GPS heights.Geophys Res Lett 2011; 38(9):L09314.
[17]
Yuan P, Li Z, Jiang W, Ma Y, Chen W, Sneeuw N.Influences of environmental loading corrections on the nonlinear variations and velocity uncertainties for the reprocessed global positioning system height time series of the crustal movement observation network of China.Remote Sens 2018; 10(6):958.
[18]
Heki K, Jin S.Geodetic study on earth surface loading with GNSS and GRACE.Satellite Navigation 2023; 4(1):24.
[19]
Longman IM.A Green’s function for determining the deformation of the Earth under surface mass loads: 1. Theory.J Geophys Res 1962; 68(2):485-496.
[20]
Longman IM.A Green’s function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical results.J Geophys Res 1963; 68(2):496-503.
[21]
Farrell WE.Deformation of the Earth by surface loads.Rev Geophys Space Phys 1972; 10(3):761-797.
[22]
Wang LS, Chen C, Zou R, Du JS, Chen XD.Using GPS and GRACE to detect seasonal horizontal deformation caused by loading of terrestrial water: a case study in the Himalayas.Chin J Geophys 2014; 57(6):1792-1804.
[23]
Chen Q.Analyzing and modeling environmental loading induced displacements with GPS and GRACE [dissertation].University of Stuttgart, Stuttgart (2015)
[24]
Van T Dam, Wahr J.Modeling environmental loading effects: a review.Phys Chem Earth 1998; 23(9,10):1077-1087.
[25]
Bengtsson L, Shukla J.Integration of space and in situ observations to study global climate change.Bull Am Meteorol Soc 1988; 69(10):1130-1143.
[26]
Ma Y, Bian L.A surface climatological validation of ECMWF ERA-Interim reanalysis and NCEP FNL analysis over east Antarctica.Chin J Polar Res 2014; 26(4):469-480.
[27]
Wei T, Yan Q, Ding M.Distribution and temporal trends of temperature extremes over Antarctica.Environ Res Lett 2019; 14(8):084040.
[28]
Wang C, Graham RM, Wang K, Gerland S, Granskog MA.Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall, and precipitation over Arctic Sea Ice: effects on sea ice thermodynamics and evolution.Cryosphere 2019; 13(6):1661-1679.
[29]
Martens HR, Argus DF, Norberg C, Blewitt G, Herring TA, Moore AW, et al.Atmospheric pressure loading in GPS positions: dependency on GPS processing methods and effect on assessment of seasonal deformation in the contiguous USA and Alaska.J Geod 2020; 94(12):115.
[30]
Zou X, Li Z, Yang D, Sun W, Ding M, Liu W, et al.Surface energy balance on a polythermal glacier, Arctic, and the role of poleward atmospheric moisture transport.Atmos Res 2023; 293:106910.
[31]
Wang Y, Sun W, Wang L, Li Y, Du W, Chen J, et al.How do different reanalysis radiation datasets perform in west Qilian Mountains?.Front Earth Sci 2022; 10:241.
[32]
Hennermann K, Berrisford P.ERA5 data documentation [Internet].Bonn: ECMWF Confluence Wiki; 2024 Aug 5 [cited 2024 Aug 17]. Available from: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation.
[33]
McNally A, Arsenault K, Kumar S, Shukla S, Peterson P, Wang S, et al.A land data assimilation system for sub-Saharan Africa food and water security applications.Sci Data 2017; 4(1):170012.
[34]
Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, et al.The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system.J Geophys Res D Atmospheres 2004; 109(D7):D07S90.
[35]
Jasinski MF, Borak JS, Kumar SV, Mocko DM, Peters-Lidard CD, Rodell M, et al.NCA-LDAS: overview and analysis of hydrologic trends for the national climate assessment.J Hydrometeorol 2019; 20(8):1595-1617.
[36]
McNally A, Jacob J, Arsenault K, Slinski K, Sarmiento DP, Hoell A, et al.A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan.Earth Syst Sci Data 2022; 14(7):3115-3135.
[37]
Arsenault KR, Shukla S, Hazra A, Getirana A, McNally A, Kumar SV, et al.The NASA hydrological forecast system for food and water security applications.Bull Am Meteorol Soc 2020; 101(7):E1007-E1025.
[38]
Hazra A, McNally A, Slinski K, Arsenault KR, Shukla S, Getirana A, et al.NASA’s NMME-based S2S hydrologic forecast system for food insecurity early warning in southern Africa.J Hydrol 2023; 617:129005.
[39]
Liu JG, Shi CX, Sun S, Liang J, Yang ZL.Improving land surface hydrological simulations in China using CLDAS meteorological forcing data.J Meteorol Res 2019; 33(6):1194-1206.
[40]
Dill R.Hydrological model LSDM for operational Earth rotation and gravity field variations.Report. Potsdam: Deutsches GeoForschungsZentrum GFZ; 2008. ST R-08/09.
[41]
Dobslaw H, Thomas M.Simulation and observation of global ocean mass anomalies.J Geophys Res Oceans 2007; 112(C5):C05040.
[42]
Quinn KJ, Ponte RM.Estimating high frequency ocean bottom pressure variability.Geophys Res Lett 2011; 38(8):L08611.
[43]
Fratepietro F, Baker TF, Williams SDP, van M Camp.Ocean loading deformations caused by storm surges on the northwest European shelf.Geophys Res Lett 2006; 33(6):L06317.
[44]
Dobslaw H, Boergens E, Dill R.GFZ GravIS RL06 ocean bottom pressure anomalies.V.0001 [Internet]. Potsdam: GFZ Data Services; 2019 [cited 2024 Aug 17]. Available from: https://doi.org/10.5880/GFZ.GRAVIS_06_L3_OBP.
[45]
Dobslaw H, Boergens E, Dill R.GFZ GravIS RL06 ocean bottom pressure anomalies.V.0002 [Internet]. Potsdam: GFZ Data Services; 2020 [cited 2024 Aug 17]. Available from: https://doi.org/10.5880/GFZ.GRAVIS_06_L3_OBP.
[46]
Gerdener H, Kusche J, Schulze K, Döll P, Klos A.The global land water storage data set release 2 (GLWS2.0) derived via assimilating GRACE and GRACE-FO data into a global hydrological model.J Geod 2023; 97(7):73.
[47]
Zhang L, Tang H, Sun W.Comparison of GRACE and GNSS seasonal load displacements considering regional averages and discrete points.J Geophys Res Solid Earth 2021; 126(8):e2021JB021775.
[48]
Huai B, Wang Y, Ding M, Zhang J, Dong X.An assessment of recent global atmospheric reanalyses for Antarctic near surface air temperature.Atmos Res 2019; 226:181-191.
[49]
Dong X, Wang Y, Hou S, Ding M, Yin B, Zhang Y.Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology.J Clim 2020; 33(10):4027-4043.
[50]
Gao H, Zhao F.A review of global hydrological models: the opportunities, challenge and outlook.J Glaciol Geocryology 2020; 42(1):224-233.
[51]
Lindsay R, Wensnahan M, Schweiger A, Zhang J.Evaluation of seven different atmospheric reanalysis products in the Arctic.J Clim 2014; 27(7):2588-2606.
[52]
Cao Y, Liang S.Recent advances in driving mechanisms of the Arctic amplification: a review.Chin Sci Bull 2018; 63(26):2757-2771.
[53]
Dill R, Dobslaw H.Numerical simulations of global scale high resolution hydrological crustal deformations.J Geophys Res Solid Earth 2013; 118(9):5008-5017.
[54]
M Aémin, Boy JP, Santamaria-Gomez A.Correcting GPS measurements for non-tidal loading.GPS Solut 2020; 24(2):45.
[55]
Van T Dam, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavall Dée, et al.Crustal displacements due to continental water loading.Geophys Res Lett 2001; 28(4):651-654.
[56]
Li C, Huang S, Chen Q, Dam T, Fok HS, Zhao Q, et al.Quantitative evaluation of environmental loading induced displacement products for correcting GNSS time series in CMONOC.Remote Sens 2020; 12(4):594.
[57]
Niu Y, Wei N, Li M, Rebischung P, Shi C, Chen G.Quantifying discrepancies in the three-dimensional seasonal variations between IGS station positions and load models.J Geod 2022; 96(4):31.
[58]
Wen Z, Rao W, Sun W.Contribution of loading deformation to the GNSS vertical velocity field in the Chinese mainland.Geophys J Int 2023; 233(3):1655-1670.
[59]
Li W, van T Dam, Li Z, Shen Y.Annual variation detected by GPS, GRACE, and loading models.Stud Geophys Geod 2016; 60(4):608-621.
[60]
Davis JL, Elósegui P, Mitrovica JX, Tamisiea ME.Climate-driven deformation of the solid Earth from GRACE and GPS.Geophys Res Lett 2004; 31(24):L24605.
[61]
Chanard K, Avouac JP, Ramillien G, Genrich J.Modeling deformation induced by seasonal variations of continental water in the Himalaya region: sensitivity to earth elastic structure.J Geophys Res Solid Earth 2014; 119(6):5097-5113.
[62]
Zhang W, Wang Y, Smeets PC, Reijmer CH, Huai B, Wang J, et al.Estimating near-surface climatology of multi-reanalyses over the Greenland Ice Sheet.Atmos Res 2021; 259:105676.
[63]
Hsu YJ, Fu Y, Bürgmann R, Hsu SY, Lin CC, Tang CH, et al.Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data.Earth Planet Sci Lett 2020; 550:116532.
[64]
Drouin V, Heki K, Sigmundsson F, Hreinsdóttir S.Constraints on seasonal load variations and regional rigidity from continuous GPS measurements in Iceland, 1997–2014.Geophys J Int 2016; 205(3):1843-1858.
[65]
Gu Y, Yuan L, Fan D, You W, Su Y.Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE, and surface loading models.Adv Space Res 2017; 59(1):88-102.
[66]
He Y, Nie G, Wu S, Li H.Comparative analysis of the correction effect of different environmental loading products on global GNSS coordinate time series.Adv Space Res 2022; 70(11):3594-3613.
[67]
Yuan P, van R Malderen, Yin X, Vogelmann H, Jiang W, Awange J, et al.Characterisations of Europe’s integrated water vapour and assessments of atmospheric reanalyses using more than 2 decades of ground-based GPS.Atmos Chem Phys 2023; 23(6):3517-3541.
[68]
Li Z, van T Dam.The phase 2 North America land data assimilation system (NLDAS-2) products for modeling water storage displacements for plate boundary observatory GNSS stations.T. van Dam (Ed.), Proceedings of the REFAG 2014—International Association of Geodesy Symposia; 2014 Oct 13–14; Luxembourg, The Grand Duchy of Luxembourg, Springer, Cham 2017; 217-225.
[69]
Li Z, Lu Y, Jiang W, Chen Q, Chen H, Ye S, et al.A new combined terrestrial water storage change model based on GRACE satellite gravimetry.Geomatics Inf Sci Wuhan Univ 2023; 48(7):1180-1191.
[70]
Van T Dam, Wahr JM.Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements.J Geophys Res Solid Earth 1987; 92(B2):1281-1286.
[71]
Trenberth KE, Smith L.The mass of the atmosphere: a constraint on global analyses.J Clim 2005; 18(6):864-875.
[72]
Yue C, Dang Y, Xu C, Gu S, Dai H.Effects and correction of atmospheric pressure loading deformation on GNSS reference stations in mainland China.Math Probl Eng 2020; 2020(1):4013150.
[73]
Dach R, Böhm J, Lutz S, Steigenberger P, Beutler G.Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis.J Geod 2011; 85(2):75-91.
[74]
Li W, Shum CK, Li F, Zhang S, Ming F, Chen W, et al.Contributions of Greenland GPS observed deformation from multisource mass loading induced seasonal and transient signals.Geophys Res Lett 2020; 47(15):e2020GL088627.
[75]
Wang D, Zhuang L, Gao L, Sun X, Huang M, Plaza A.An improved inversion method with additional constraints for surface mass load utilizing GNSS height time series.IEEE Trans Geosci Remote Sens 2023; 61:1-16.
[76]
Jiang W, Zhou B, Li Z.Effects of atmospheric loading on IGS stations in different latitude zones.Sci Surv Map 2016; 4:28-32.
[77]
Jia Y, Zhu X, Sun F, Xiao K, Ke N.Time-varying characteristics and cause analysis of annual amplitudes of GNSS vertical coordinate time series.Chin J Geophys 2023; 66(1):162-172.
[78]
Hu S, Chen K, Zhu H, Xue C, Wang T, Yang Z, et al.A comprehensive analysis of environmental loading effects on vertical GPS time series in Yunnan, southwest China.Remote Sens 2022; 14(12):2741.
[79]
Ponte RM.A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global ocean.J Geophys Res Oceans 1999; 104(C1):1289-1300.
[80]
Van TM Dam, Collilieux X, Wuite J, Altamimi Z, Ray J.Nontidal ocean loading: amplitudes and potential effects in GPS height time series.J Geod 2012; 86(11):1043-1057.
[81]
Van TM Dam, Wahr J, Chao Y, Leuliette E.Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading.Geophys J Int 1997; 129(3):507-517.
[82]
Zhou B, Jiang W, Li Z.Effects of non-tidal ocean loading on IGS stations in coastal areas.J Geod Geodyn 2016; 36(11):1008-1013.
[83]
Nordman M, Virtanen H, Nyberg S, Mäkinen J.Non-tidal loading by the Baltic sea: comparison of modelled deformation with GNSS time series.GeoResJ 2015; 7:14-21.
[84]
Geng J, Williams SDP, Teferle FN, Dodson AH.Detecting storm surge loading deformations around the southern North Sea using subdaily GPS.Geophys J Int 2012; 191(2):569-578.
[85]
Geng J, Xin S, Williams SDP, Jiang W.Comparing non-tidal ocean loading around the southern North Sea with subdaily GPS/GLONASS data.J Geophys Res Solid Earth 2021; 126:e2020JB020685.
[86]
M Aémin, Watson C, Haigh ID, MacPherson L, Tregoning P.Non-linear motions of Australian geodetic stations induced by non-tidal ocean loading and the passage of tropical cyclones.J Geod 2014; 88(10):927-940.
[87]
Haritonova D.The impact of the Baltic Sea non-tidal loading on GNSS station coordinate time series: the case of Latvia.Baltic J Modern Computing 2019; 7(4):541-549.
[88]
Zhang B, Zhang E, Liu L, Khan SA, van T Dam, Yao Y, et al.Geodetic measurements reveal short-term changes of glacial mass near Jakobshavn Isbræ (Greenland) from 2007 to 2017.Earth Planet Sci Lett 2018; 503:216-226.
[89]
Haigh ID, MacPherson LR, Mason MS, Wijeratne EMS, Pattiaratchi CB, Crompton RP, et al.Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges, and mean sea level.Clim Dyn 2014; 42:139-147.
[90]
Haigh ID, Wijeratne EMS, MacPherson LR, Pattiaratchi CB, Mason MS, Crompton RP, et al.Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges.Clim Dyn 2014; 42:121-138.
[91]
Fu Y, Freymueller JT.Seasonal and long term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements.J Geophys Res Solid Earth 2012; 117(B3):2011JB008925.
[92]
Johnson CW, Fu Y, Bürgmann R.Stress models of the annual hydrospheric, atmospheric, thermal, and tidal loading cycles on California faults: perturbation of background stress and changes in seismicity.J Geophys Res Solid Earth 2017; 122(12):10605-10625.
[93]
Klos A, Gruszczynska M, Bos MS, Boy J, Bogusz G.Estimates of vertical velocity errors for IGS ITRF2014 stations by applying the improved singular spectrum analysis method and environmental loading models.C. Braitenberg, G. Rossi (Eds.), Proceedings of the Geodynamics and Earth tides observations from global to micro scale, Springer, Cham 2019; 229-246.
[94]
Seitz M, Blobfeld M, Angermann D.Preparing the ITRF2020: how to consider non-tidal loading signals in reference system realization?.Unified Analysis Workshop, Paris (2019)
[95]
Andrei CO, Lahtinen S, Nordman M, Näränen J, Koivula H, Poutanen M, et al.GPS time series analysis from Aboa the Finnish Antarctic research station.Remote Sens 2018; 10(12):1937.
[96]
Zhang J, Li Z, Zhang P, et al.Assessing the nonlinear changes in global navigation satellite system vertical time series with environmental loading in mainland China.Remote Sens 2023; 15(16):4115.
[97]
Xu X, Dong D, Fang M, Zhou Y, Wei N, Zhou F.Contributions of thermoelastic deformation to seasonal variations in GPS station position.GPS Solut 2017; 21(3):1265-1274.
[98]
Sun H, Xu J, Cui X.Research progress of the gravity field application in Earth’s geodynamics and interior structure.Acta Geod Cartogr Sin 2017; 46(10):1290-1299.
[99]
Wang J, Penna NT, Clarke PJ, Bos MS.Asthenospheric anelasticity effects on ocean tide loading around the East China Sea observed with GPS.Solid Earth 2020; 11(1):185-197.
[100]
Dill R, Tesauro M.Applying local Green’s functions to study the influence of the crustal structure on hydrological loading displacements.J Geodyn 2015; 88:14-22.
[101]
Fan W, Jiang W, Li Z, Tao J, Wang Z, He L.Impacts of local green’s functions on modeling atmospheric loading effects for GNSS reference stations.Earth Space Sci 2024; 11:e2023EA003113.
[102]
Intergovernmental Panel on Climate Change (IPC C).Special report on the ocean and cryosphere in a changing climate.Report. Geneva: Intergovernmental Panel on Climate Change; 2019.
[103]
Kang S, Guo W, Zhong X, Xu M.Changes in the mountain cryosphere and their impacts and adaptation measures.Clim Change Res 2020; 16(2):143-152.
[104]
Yao T, Thompson L, Yang W.Different glacier status with atmospheric circulations in Qinghai–Xizang Plateau and surroundings.Nat Clim Change 2012; 2:663-667.
[105]
Zou X, Ding M, Sun W, Yang D, Liu W, Huai B, et al.The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014.Polar Res 2021; 2021(40):1-15.
[106]
Hofer S, Tedstone AJ, Fettweis X, Bamber J.Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.Sci Adv 2017; 3(6):e1700584.
[107]
Wolstencroft M, Shen Z, Törnqvist TE, Milne GA, Kulp M.Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: insights from geophysical modeling.J Geophys Res Solid Earth 2014; 119(4):3838-3856.
[108]
Khan SA, Liu L, Wahr J, Howat I, Joughin I, van T Dam, et al.GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss.J Geophys Res Solid Earth 2010; 115(B9):B09405.
[109]
Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E.Spread of ice mass loss into northwest Greenland observed by GRACE and GPS.Geophys Res Lett 2010; 37(6):L06501.
[110]
Liu L, Khan SA, van T Dam, Ma JHY, Bevis M.Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading.J Geophys Res Solid Earth 2017; 122:677-691.
[111]
An JC, Zhang BJ, Ai ST, Wang Z, Feng Y.Evaluation of vertical crustal movements and sea level changes around Greenland from GPS and tide gauge observations.Acta Oceanol Sin 2021; 40(1):4-12.
[112]
Chanard K, M Métois, Rebischung P, Avouac JP.A warning against over-interpretation of seasonal signals measured by the Global Navigation Satellite System.Nat Commun 2020; 11(1):1-4.
[113]
Klos A, Dobslaw H, Dill R, Bogusz J.Identifying the sensitivity of GPS to non-tidal loadings at various time resolutions: examining vertical displacements from continental Eurasia.GPS Solut 2021; 25(3):89.
[114]
Prawirodirdjo L, Ben-Zion Y, Bock Y.Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series.J Geophys Res 2006; 111(B2):B02408.
[115]
Fang M, Dong D, Hager BH.Displacements due to surface temperature variation on a uniform elastic sphere with its centre of mass stationary.Geophys J Int 2014; 196(1):194-203.
[116]
Jiang W, Wang K, Deng L, Li Z.Impact on non-linear vertical variation of GNSS reference stations caused by thermal expansion.Acta Geod Cartogr Sin 2015; 44(5):473-480.
[117]
Lu R, Li Z, Chen Q, Ding X, Yang K, Zhang M.On the contributions of refined thermal expansion model to nonlinear variations from different GNSS height time series products.GPS Solut 2024; 28:80.
[118]
Ray J, Altamimi Z, Collilieux X, van T Dam.Anomalous harmonics in the spectra of GPS position estimates.GPS Solut 2008; 12:55-64.
[119]
Penna NT, King MA, Stewart MP.GPS height time series: short-period origins of spurious long-period signals.J Geophys Res 2007; 112(B2):B02402.
[120]
Van T Dam, Wahr J, Lavall Dée.A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe.J Geophys Res Solid Earth 2007; 112(B3):B03404.
[121]
Petrie EJ, King MA, Moore P, Lavall DAée.Higher-order ionospheric effects on the GPS reference frame and velocities.J Geophys Res 2010; 115(B3):B03417.
[122]
Deng L, Jiang W, Li Z, Chen H, Wang K, Ma Y.Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GNSS coordinate time series.J Geodesy 2017; 91:207-227.
[123]
Li Z, Jiang WP, Ding WW, Deng LS, Peng LF.Estimates of minor ocean tide loading displacement and its impact on continuous GNSS coordinate time series.Sensors 2014; 14(3):5552-5572.
[124]
Altamimi Z, Rebischung P, Collilieux X, M Létivier, Chanard K.ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions.J Geodesy 2023; 97:47.
[125]
Jiang W, Li Z, Wei N, Liu J.Progress and thoughts on establishment of geodetic coordinate frame.Acta Geod Cartogr Sin 2022; 51(7):1259-1270.
PDF(478 KB)

Accesses

Citation

Detail

段落导航
相关文章

/