基于复合超透镜实现的无畸变成像

郑菡雨, 杨帆, 林宏易, Mikhail Y. Shalaginov, 李兆熠, Padraic Burns, 古田, 胡崛隽

工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 52-58.

PDF(2148 KB)
PDF(2148 KB)
工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 52-58. DOI: 10.1016/j.eng.2024.09.004
研究论文
Article

基于复合超透镜实现的无畸变成像

作者信息 +

Compound Metalens Enabling Distortion-Free Imaging

Author information +
History +

摘要

超表面透镜的出现已经影响了各种各样的应用领域,如光束操控、成像、深度感知和显示投影。然而,在许多光学设计的规格中,光学畸变作为一个重要指标,在超颖光学领域却很少被讨论。在此,我们提出了一种基于复合超表面透镜的通用设计思路,以实现按需调控成像畸变的目的。具体而言,我们展示了双层超表面结构所提供的额外自由度,以实现定制化的角度依赖像高关系,从而在最小化其他单色像差的同时实现畸变控制。利用这一平台,我们通过实验展示了一种复合鱼眼超表面透镜,其在140°的宽视场范围内具有衍射极限的性能,并且成像畸变低于2%,相比之下,未修正的单层超透镜成像畸变高达22%。本文提出的设计策略和复合超透镜架构可广泛影响消费电子、汽车和机器人传感、医学成像以及机器视觉等领域。

Abstract

The emergence of metalenses has impacted a wide variety of applications such as beam steering, imaging, depth sensing, and display projection. Optical distortion, an important metric among many optical design specifications, has however rarely been discussed in the context of meta-optics. Here, we present a generic approach for on-demand distortion engineering using compound metalenses. We show that the extra degrees of freedom afforded by a doublet metasurface architecture allow custom-tailored angle-dependent image height relations and hence distortion control while minimizing other monochromatic aberrations. Using this platform, we experimentally demonstrate a compound fisheye metalens with diffraction-limited performance across a wide field of view of 140° and a low barrel distortion of less than 2%, compared with up to 22% distortion in a reference metalens without compensation. The design strategy and compound metalens architecture presented herein are expected to broadly impact metasurface applications in consumer electronics, automotive and robotic sensing, medical imaging, and machine vision systems.

Keywords

Metasurface / Metalens / Wide field of view / Wavefront correction / Compound meta-optics

引用本文

导出引用
郑菡雨, 杨帆, 林宏易. 基于复合超透镜实现的无畸变成像. Engineering. 2025, 45(2): 52-58 https://doi.org/10.1016/j.eng.2024.09.004

参考文献

[1]
Yu N, Capasso F.Flat optics with designer metasurfaces.Nat Mater 2014; 13(2):139-150.
[2]
Kamali SM, Arbabi E, Arbabi A, Faraon A.A review of dielectric optical metasurfaces for wavefront control.Nanophotonics 2018; 7(6):1041-1068.
[3]
Dorrah AH, Capasso F.Tunable structured light with flat optics.Science 1979; 2022:376.
[4]
Ni Y, Chen S, Wang Y, Tan Q, Xiao S, Yang Y.Metasurface for structured light projection over 120° field of view.Nano Lett 2020; 20(9):6719-6724.
[5]
Kim G, Kim Y, Yun J, Moon SW, Kim S, Kim J, et al.Metasurface-driven full-space structured light for three-dimensional imaging.Nat Commun 2022; 13:5920.
[6]
Wang QH, Ni PN, Xie YY, Kan Q, Chen PP, Fu P, et al.On-chip generation of structured light based on metasurface optoelectronic integration.Laser Photonics Rev 2021; 15(3):2000385.
[7]
Hsu WC, Chang CH, Hong YH, Kuo HC, Huang YW.Metasurface- and PCSEL-based structured light for monocular depth perception and facial recognition.Nano Lett 2023; 24(5):1808-1815.
[8]
Li C, Li X, He C, Geng G, Li J, Jing X, et al.Metasurface-based structured light sensing without triangulation.Adv Opt Mater 2024; 12(7):2302126.
[9]
Deng L, Jin R, Xu Y, Liu Y.Structured light generation using angle-multiplexed metasurfaces.Adv Opt Mater 2023; 11(16):2300299.
[10]
Zheng H, Liu Q, Zhou Y, Kravchenko II, Huo Y, Valentine J.Meta-optic accelerators for object classifiers.Sci Adv 2022; 8(30):eabo6410.
[11]
Zheng H, Liu Q, Kravchenko II, Zhang X, Huo Y, Valentine JG.Multichannel meta-imagers for accelerating machine vision.Nat Nanotechnol 2024; 19(4):471-478.
[12]
Huang AL, Tanguy QAA, Fröch JE, Mukherjee S, Böhringer KF, Majumdar A.Photonic advantage of optical encoders.Nanophotonics 2023; 13(7):1191-1196.
[13]
Swartz BT, Zheng H, Forcherio GT, Valentine J.Broadband and large-aperture metasurface edge encoders for incoherent infrared radiation.Sci Adv 2024; 10(6):eadk0024.
[14]
Luo X, Hu Y, Ou X, Li X, Lai J, Liu N, et al.Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible.Light Sci Appl 2022; 11:158.
[15]
Li W, Ma Q, Liu C, Zhang Y, Wu X, Wang J, et al.Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision.Nat Commun 2023; 14:989.
[16]
Neshev DN, Miroshnichenko AE.Enabling smart vision with metasurfaces.Nat Photonics 2023; 17:26-35.
[17]
Li L, Zhao H, Liu C, Li L, Cui TJ.Intelligent metasurfaces: control, communication and computing.eLight 2022; 2:7.
[18]
Lan S, Zhang X, Taghinejad M, Rodrigues S, Lee KT, Liu Z, et al.Metasurfaces for near-eye augmented reality.ACS Photonics 2019; 6(4):864-870.
[19]
Lee GY, Hong JY, Hwang SH, Moon S, Kang H, Jeon S, et al.Metasurface eyepiece for augmented reality.Nat Commun 2018; 9:4562.
[20]
Li Z, Lin P, Huang YW, Park JS, Chen WT, Shi Z, et al.Meta-optics achieves RGB-achromatic focusing for virtual reality.Sci Adv 2021; 7(5):eabe4458.
[21]
Li Z, Pestourie R, Park JS, Huang YW, Johnson SG, Capasso F.Inverse design enables large-scale high-performance meta-optics reshaping virtual reality.Nat Commun 2022; 13:2409.
[22]
Song W, Liang X, Li S, Li D, Paniagua-Domínguez R, Lai KH, et al.Large-scale Huygens’ metasurfaces for holographic 3D near-eye displays.Laser Photonics Rev 2021; 15(9):2000538.
[23]
Yang Y, Seong J, Choi M, Park J, Kim G, Kim H, et al.Integrated metasurfaces for re-envisioning a near-future disruptive optical platform.Light Sci Appl 2023; 12:152.
[24]
Song W, Liang X, Li S, Moitra P, Xu X, Lassalle E, et al.Retinal projection near-eye displays with Huygens’ metasurfaces.Adv Opt Mater 2023; 11(5):2202348.
[25]
Deng Y, Wu C, Meng C, Bozhevolnyi SI, Ding F.Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering.ACS Nano 2021; 15(11):18532-18540.
[26]
Tao J, You Q, Li Z, Luo M, Liu Z, Qiu Y, et al.Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications.Adv Mater 2022; 34(6):2106080.
[27]
Zhang Y, Fowler C, Liang J, Azhar B, Shalaginov MY, Deckoff-Jones S, et al.Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material.Nat Nanotechnol 2021; 16(6):661-666.
[28]
Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S, Faraon A.Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations.Nat Commun 2016; 7:13682.
[29]
Shrestha S, Overvig AC, Lu M, Stein A, Yu N.Broadband achromatic dielectric metalenses.Light Sci Appl 2018; 7:85.
[30]
Wang S, Wu PC, Su VC, Lai YC, Chen MK, Kuo HY, et al.A broadband achromatic metalens in the visible.Nat Nanotechnol 2018; 13(3):227-232.
[31]
Aiello MD, Backer AS, Sapon AJ, Perreault JD, Llull P, Acosta VM.Achromatic varifocal metalens for the visible spectrum.ACS Photonics 2019; 6(10):2432-2440.
[32]
Fan Z, Qiu HY, Zhang HL, Pang XN, Zhou LD, Liu L, et al.A broadband achromatic metalens array for integral imaging in the visible.Light Sci Appl 2019; 8:67.
[33]
Arbabi A, Faraon A.Advances in optical metalenses.Nat Photonics 2023; 17:16-25.
[34]
Engelberg J, Levy U.The advantages of metalenses over diffractive lenses.Nat Commun 2020; 11:1991.
[35]
Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F.Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging.Science 1979; 2016(352):1190-1194.
[36]
Chen J, Ye X, Gao S, Chen Y, Zhao Y, Huang C, et al.Planar wide-angle-imaging camera enabled by metalens array.Optica 2022; 9(4):431.
[37]
Guo Y, Ma X, Pu M, Li X, Zhao Z, Luo X.High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens.Adv Opt Mater 2018; 6(19):1800592.
[38]
Zhang F, Pu M, Li X, Ma X, Guo Y, Gao P, et al.Extreme-angle silicon infrared optics enabled by streamlined surfaces.Adv Mater 2021; 33(11):2008157.
[39]
Martins A, Li J, Borges BHV, Krauss TF, Martins ER.Fundamental limits and design principles of doublet metalenses.Nanophotonics 2022; 11(6):1187-1194.
[40]
Lee M, Kim H, Paik J.Correction of barrel distortion in fisheye lens images using image-based estimation of distortion parameters.IEEE Access 2019; 7:45723-45733.
[41]
Liu W, Li Z, Cheng H, Tang C, Li J, Zhang S, et al.Metasurface enabled wide-angle Fourier lens.Adv Mater 2018; 30(23):1706368.
[42]
Li S, Hsu CW.Thickness bound for nonlocal wide-field-of-view metalenses.Light Sci Appl 2022; 11:338.
[43]
Engelberg J, Zhou C, Mazurski N, Bar-David J, Kristensen A, Levy U.Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications.Nanophotonics 2020; 9(2):361-370.
[44]
Shalaginov MY, An S, Yang F, Su P, Lyzwa D, Agarwal AM, et al.Single-element diffraction-limited fisheye metalens.Nano Lett 2020; 20(10):7429-7437.
[45]
Groever B, Chen WT, Capasso F.Meta-lens doublet in the visible region.Nano Lett 2017; 17(8):4902-4907.
[46]
Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana MS, Faraon A.MEMS-tunable dielectric metasurface lens.Nat Commun 2018; 9:812.
[47]
Xie T, Zhang F, Pu M, Bao H, Jin J, Cai J, et al.Ultrathin, wide-angle, and high-resolution meta-imaging system via rear-position wavevector filter.Laser Photonics Rev 2023; 17(9):2300119.
[48]
Martins A, Li K, Li J, Liang H, Conteduca D, Borges BHV, et al.On metalenses with arbitrarily wide field of view.ACS Photonics 2020; 7(8):2073-2079.
[49]
Yang F, An S, Shalaginov MY, Zhang H, Rivero-Baleine C, Hu J, et al.Design of broadband and wide-field-of-view metalenses.Opt Lett 2021; 46(22):5735.
[50]
Lassalle E, Mass TWW, Eschimese D, Baranikov AV, Khaidarov E, Li S, et al.Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection.ACS Photonics 2021; 8(5):1457-1468.
[51]
Yu H, Cen Z, Li X.Achromatic and wide field of view metalens based on the harmonic diffraction and a quadratic phase.Opt Express 2022; 30(25):45413.
[52]
Fan CY, Lin CP, Su GDJ.Ultrawide-angle and high-efficiency metalens in hexagonal arrangement.Sci Rep 2020; 10:15677.
[53]
Shalaginov MY, Lin H, Yang F, Weninger DM, Li C, Agarwal AM, et al.Metasurface-enabled wide-angle stereoscopic imaging. In: Proceedings of Frontiers in Optics + Laser Science 2022; 2022 Oct 17–20; Rochester, NY, USA; 2022.
[54]
Yang F, An S, Shalaginov MY, Zhang H, Hu J, Gu T.Understanding wide field-of-view flat lenses: an analytical solution.Chin Opt Lett 2023; 21(2):023601.
[55]
Zheng H, He M, Zhou Y, Kravchenko II, Caldwell JD, Valentine JG.Compound meta-optics for complete and loss-less field control.ACS Nano 2022; 16(9):15100-15107.
[56]
Zhou Y, Kravchenko II, Wang H, Zheng H, Gu G, Valentine J.Multifunctional metaoptics based on bilayer metasurfaces.Light Sci Appl 2019; 8:80.
[57]
Yang F, Gu T, Hu J.Analytical design framework for metasurface projection optics.J Opt Soc Am B 2023; 40(8):2211.
[58]
Hugonin AJP, Lalanne P.RETICOLO CODE 1D for the diffraction by stacks of lamellar 1D gratings.2012. arXiv: 2101.00901.
[59]
Arbabi A, Arbabi E, Mansouree M, Han S, Kamali SM, Horie Y, et al.Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique.Sci Rep 2020; 10:7124.
[60]
Yang F, Lin HI, Shalaginov MY, Stoll K, An S, Rivero-Baleine C, et al.Reconfigurable parfocal zoom metalens.Adv Opt Mater 2022; 10(17):2200721.
[61]
McClung A, Samudrala S, Torfeh M, Mansouree M, Arbabi A.Snapshot spectral imaging with parallel metasystems.Sci Adv 2020; 6(38):eabc7646.
PDF(2148 KB)

Accesses

Citation

Detail

段落导航
相关文章

/