[1] |
Yu N, Capasso F.Flat optics with designer metasurfaces.Nat Mater 2014; 13(2):139-150.
|
[2] |
Kamali SM, Arbabi E, Arbabi A, Faraon A.A review of dielectric optical metasurfaces for wavefront control.Nanophotonics 2018; 7(6):1041-1068.
|
[3] |
Dorrah AH, Capasso F.Tunable structured light with flat optics.Science 1979; 2022:376.
|
[4] |
Ni Y, Chen S, Wang Y, Tan Q, Xiao S, Yang Y.Metasurface for structured light projection over 120° field of view.Nano Lett 2020; 20(9):6719-6724.
|
[5] |
Kim G, Kim Y, Yun J, Moon SW, Kim S, Kim J, et al.Metasurface-driven full-space structured light for three-dimensional imaging.Nat Commun 2022; 13:5920.
|
[6] |
Wang QH, Ni PN, Xie YY, Kan Q, Chen PP, Fu P, et al.On-chip generation of structured light based on metasurface optoelectronic integration.Laser Photonics Rev 2021; 15(3):2000385.
|
[7] |
Hsu WC, Chang CH, Hong YH, Kuo HC, Huang YW.Metasurface- and PCSEL-based structured light for monocular depth perception and facial recognition.Nano Lett 2023; 24(5):1808-1815.
|
[8] |
Li C, Li X, He C, Geng G, Li J, Jing X, et al.Metasurface-based structured light sensing without triangulation.Adv Opt Mater 2024; 12(7):2302126.
|
[9] |
Deng L, Jin R, Xu Y, Liu Y.Structured light generation using angle-multiplexed metasurfaces.Adv Opt Mater 2023; 11(16):2300299.
|
[10] |
Zheng H, Liu Q, Zhou Y, Kravchenko II, Huo Y, Valentine J.Meta-optic accelerators for object classifiers.Sci Adv 2022; 8(30):eabo6410.
|
[11] |
Zheng H, Liu Q, Kravchenko II, Zhang X, Huo Y, Valentine JG.Multichannel meta-imagers for accelerating machine vision.Nat Nanotechnol 2024; 19(4):471-478.
|
[12] |
Huang AL, Tanguy QAA, Fröch JE, Mukherjee S, Böhringer KF, Majumdar A.Photonic advantage of optical encoders.Nanophotonics 2023; 13(7):1191-1196.
|
[13] |
Swartz BT, Zheng H, Forcherio GT, Valentine J.Broadband and large-aperture metasurface edge encoders for incoherent infrared radiation.Sci Adv 2024; 10(6):eadk0024.
|
[14] |
Luo X, Hu Y, Ou X, Li X, Lai J, Liu N, et al.Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible.Light Sci Appl 2022; 11:158.
|
[15] |
Li W, Ma Q, Liu C, Zhang Y, Wu X, Wang J, et al.Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision.Nat Commun 2023; 14:989.
|
[16] |
Neshev DN, Miroshnichenko AE.Enabling smart vision with metasurfaces.Nat Photonics 2023; 17:26-35.
|
[17] |
Li L, Zhao H, Liu C, Li L, Cui TJ.Intelligent metasurfaces: control, communication and computing.eLight 2022; 2:7.
|
[18] |
Lan S, Zhang X, Taghinejad M, Rodrigues S, Lee KT, Liu Z, et al.Metasurfaces for near-eye augmented reality.ACS Photonics 2019; 6(4):864-870.
|
[19] |
Lee GY, Hong JY, Hwang SH, Moon S, Kang H, Jeon S, et al.Metasurface eyepiece for augmented reality.Nat Commun 2018; 9:4562.
|
[20] |
Li Z, Lin P, Huang YW, Park JS, Chen WT, Shi Z, et al.Meta-optics achieves RGB-achromatic focusing for virtual reality.Sci Adv 2021; 7(5):eabe4458.
|
[21] |
Li Z, Pestourie R, Park JS, Huang YW, Johnson SG, Capasso F.Inverse design enables large-scale high-performance meta-optics reshaping virtual reality.Nat Commun 2022; 13:2409.
|
[22] |
Song W, Liang X, Li S, Li D, Paniagua-Domínguez R, Lai KH, et al.Large-scale Huygens’ metasurfaces for holographic 3D near-eye displays.Laser Photonics Rev 2021; 15(9):2000538.
|
[23] |
Yang Y, Seong J, Choi M, Park J, Kim G, Kim H, et al.Integrated metasurfaces for re-envisioning a near-future disruptive optical platform.Light Sci Appl 2023; 12:152.
|
[24] |
Song W, Liang X, Li S, Moitra P, Xu X, Lassalle E, et al.Retinal projection near-eye displays with Huygens’ metasurfaces.Adv Opt Mater 2023; 11(5):2202348.
|
[25] |
Deng Y, Wu C, Meng C, Bozhevolnyi SI, Ding F.Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering.ACS Nano 2021; 15(11):18532-18540.
|
[26] |
Tao J, You Q, Li Z, Luo M, Liu Z, Qiu Y, et al.Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications.Adv Mater 2022; 34(6):2106080.
|
[27] |
Zhang Y, Fowler C, Liang J, Azhar B, Shalaginov MY, Deckoff-Jones S, et al.Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material.Nat Nanotechnol 2021; 16(6):661-666.
|
[28] |
Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S, Faraon A.Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations.Nat Commun 2016; 7:13682.
|
[29] |
Shrestha S, Overvig AC, Lu M, Stein A, Yu N.Broadband achromatic dielectric metalenses.Light Sci Appl 2018; 7:85.
|
[30] |
Wang S, Wu PC, Su VC, Lai YC, Chen MK, Kuo HY, et al.A broadband achromatic metalens in the visible.Nat Nanotechnol 2018; 13(3):227-232.
|
[31] |
Aiello MD, Backer AS, Sapon AJ, Perreault JD, Llull P, Acosta VM.Achromatic varifocal metalens for the visible spectrum.ACS Photonics 2019; 6(10):2432-2440.
|
[32] |
Fan Z, Qiu HY, Zhang HL, Pang XN, Zhou LD, Liu L, et al.A broadband achromatic metalens array for integral imaging in the visible.Light Sci Appl 2019; 8:67.
|
[33] |
Arbabi A, Faraon A.Advances in optical metalenses.Nat Photonics 2023; 17:16-25.
|
[34] |
Engelberg J, Levy U.The advantages of metalenses over diffractive lenses.Nat Commun 2020; 11:1991.
|
[35] |
Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F.Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging.Science 1979; 2016(352):1190-1194.
|
[36] |
Chen J, Ye X, Gao S, Chen Y, Zhao Y, Huang C, et al.Planar wide-angle-imaging camera enabled by metalens array.Optica 2022; 9(4):431.
|
[37] |
Guo Y, Ma X, Pu M, Li X, Zhao Z, Luo X.High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens.Adv Opt Mater 2018; 6(19):1800592.
|
[38] |
Zhang F, Pu M, Li X, Ma X, Guo Y, Gao P, et al.Extreme-angle silicon infrared optics enabled by streamlined surfaces.Adv Mater 2021; 33(11):2008157.
|
[39] |
Martins A, Li J, Borges BHV, Krauss TF, Martins ER.Fundamental limits and design principles of doublet metalenses.Nanophotonics 2022; 11(6):1187-1194.
|
[40] |
Lee M, Kim H, Paik J.Correction of barrel distortion in fisheye lens images using image-based estimation of distortion parameters.IEEE Access 2019; 7:45723-45733.
|
[41] |
Liu W, Li Z, Cheng H, Tang C, Li J, Zhang S, et al.Metasurface enabled wide-angle Fourier lens.Adv Mater 2018; 30(23):1706368.
|
[42] |
Li S, Hsu CW.Thickness bound for nonlocal wide-field-of-view metalenses.Light Sci Appl 2022; 11:338.
|
[43] |
Engelberg J, Zhou C, Mazurski N, Bar-David J, Kristensen A, Levy U.Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications.Nanophotonics 2020; 9(2):361-370.
|
[44] |
Shalaginov MY, An S, Yang F, Su P, Lyzwa D, Agarwal AM, et al.Single-element diffraction-limited fisheye metalens.Nano Lett 2020; 20(10):7429-7437.
|
[45] |
Groever B, Chen WT, Capasso F.Meta-lens doublet in the visible region.Nano Lett 2017; 17(8):4902-4907.
|
[46] |
Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana MS, Faraon A.MEMS-tunable dielectric metasurface lens.Nat Commun 2018; 9:812.
|
[47] |
Xie T, Zhang F, Pu M, Bao H, Jin J, Cai J, et al.Ultrathin, wide-angle, and high-resolution meta-imaging system via rear-position wavevector filter.Laser Photonics Rev 2023; 17(9):2300119.
|
[48] |
Martins A, Li K, Li J, Liang H, Conteduca D, Borges BHV, et al.On metalenses with arbitrarily wide field of view.ACS Photonics 2020; 7(8):2073-2079.
|
[49] |
Yang F, An S, Shalaginov MY, Zhang H, Rivero-Baleine C, Hu J, et al.Design of broadband and wide-field-of-view metalenses.Opt Lett 2021; 46(22):5735.
|
[50] |
Lassalle E, Mass TWW, Eschimese D, Baranikov AV, Khaidarov E, Li S, et al.Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection.ACS Photonics 2021; 8(5):1457-1468.
|
[51] |
Yu H, Cen Z, Li X.Achromatic and wide field of view metalens based on the harmonic diffraction and a quadratic phase.Opt Express 2022; 30(25):45413.
|
[52] |
Fan CY, Lin CP, Su GDJ.Ultrawide-angle and high-efficiency metalens in hexagonal arrangement.Sci Rep 2020; 10:15677.
|
[53] |
Shalaginov MY, Lin H, Yang F, Weninger DM, Li C, Agarwal AM, et al.Metasurface-enabled wide-angle stereoscopic imaging. In: Proceedings of Frontiers in Optics + Laser Science 2022; 2022 Oct 17–20; Rochester, NY, USA; 2022.
|
[54] |
Yang F, An S, Shalaginov MY, Zhang H, Hu J, Gu T.Understanding wide field-of-view flat lenses: an analytical solution.Chin Opt Lett 2023; 21(2):023601.
|
[55] |
Zheng H, He M, Zhou Y, Kravchenko II, Caldwell JD, Valentine JG.Compound meta-optics for complete and loss-less field control.ACS Nano 2022; 16(9):15100-15107.
|
[56] |
Zhou Y, Kravchenko II, Wang H, Zheng H, Gu G, Valentine J.Multifunctional metaoptics based on bilayer metasurfaces.Light Sci Appl 2019; 8:80.
|
[57] |
Yang F, Gu T, Hu J.Analytical design framework for metasurface projection optics.J Opt Soc Am B 2023; 40(8):2211.
|
[58] |
Hugonin AJP, Lalanne P.RETICOLO CODE 1D for the diffraction by stacks of lamellar 1D gratings.2012. arXiv: 2101.00901.
|
[59] |
Arbabi A, Arbabi E, Mansouree M, Han S, Kamali SM, Horie Y, et al.Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique.Sci Rep 2020; 10:7124.
|
[60] |
Yang F, Lin HI, Shalaginov MY, Stoll K, An S, Rivero-Baleine C, et al.Reconfigurable parfocal zoom metalens.Adv Opt Mater 2022; 10(17):2200721.
|
[61] |
McClung A, Samudrala S, Torfeh M, Mansouree M, Arbabi A.Snapshot spectral imaging with parallel metasystems.Sci Adv 2020; 6(38):eabc7646.
|