2014—2020年中国PM2.5空气污染降低在缓解抗菌药物耐药性方面的协同效益

Zhenchao Zhou, Zejun Lin, Xinyi Shuai, Xiaoliang Ba, Chioma Achi, Mark A. Holmes, Tong Xu, Yingru Lu, Yonghong Xiao, Jianming Xu, Baojing Gu, Hong Chen

工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 243-251.

PDF(1119 KB)
PDF(1119 KB)
工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 243-251. DOI: 10.1016/j.eng.2024.09.013
研究论文
Article

2014—2020年中国PM2.5空气污染降低在缓解抗菌药物耐药性方面的协同效益

作者信息 +

Co-Benefits of Antimicrobial Resistance Mitigation from China’s PM2.5 Air Pollution Reduction Between 2014–2020

Author information +
History +

Abstract

The One Health concept acknowledges the importance of multiple dimensions in controlling antimicrobial resistance (AMR). However, our understanding of how anthropological, socioeconomic, and environmental factors drive AMR at a national level remains limited. To explore associations between potential contributing factors and AMR, this study analyzed an extensive database comprising 13 major antibiotic-resistant bacteria and over 30 predictors (e.g., air pollution, antibiotic usage, economy, husbandry, public services, health services, education, diet, climate, and population) from 2014 to 2020 across China. The multivariate analysis results indicate that fine particulate matter with a diameter of 2.5 μm or less (PM2.5) is associated with AMR, accounting for 12% of the variation, followed by residents’ income (10.3%) and antibiotic usage density (5.1%). A reduction in PM2.5 of 1 µg·m−3 is linked to a 0.17% decrease in aggregate antibiotic resistance (p < 0.001, R2 = 0.74). Under different scenarios of China’s PM2.5 air-quality projections, we further estimated the premature death toll and economic burden derived from PM2.5-related antibiotic resistance in China until 2060. PM2.5-derived AMR is estimated to cause approximately 27 000 (95% confidence interval (CI): 646848 830) premature deaths and about 0.51 (95% CI; 0.12–0.92) million years of life lost annually in China, equivalent to an annual welfare loss of 8.4 (95%CI; 2.0–15.0) billion USD. Implementing the “Ambitious Pollution 1.5 °C Goals” scenario to reduce PM2.5 concentrations could prevent roughly 14 000 (95% CI; 3324–26 320) premature deaths—with a potential monetary value of 9.8 (95% CI; 2.2–17.6) billion USD—from AMR by 2060. These results suggest that reducing air pollution may offer co-benefits in the health and economic sectors by mitigating AMR.

Keywords

Antimicrobial resistance / Air pollution / Antibiotic usage / Multivariable analysis / Premature deaths / Nationwide

引用本文

导出引用
Zhenchao Zhou, Zejun Lin, Xinyi Shuai. 2014—2020年中国PM2.5空气污染降低在缓解抗菌药物耐药性方面的协同效益. Engineering. 2025, 45(2): 243-251 https://doi.org/10.1016/j.eng.2024.09.013

参考文献

[1]
O’Neill J.Tackling drug-resistant infections globally: final report and recommendations.Report. London: Government of the United Kingdom; 2016.
[2]
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al.Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.Lancet 2022; 399(10325):629-655.
[3]
Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R.Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis.Lancet Planet Health 2018; 2(9):398-405.
[4]
MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS.Antibiotic resistance increases with local temperature.Nat Clim Chang 2018; 8(6):510-514.
[5]
Allel K, Day L, Hamilton A, Lin L, Furuya-Kanamori L, Moore CE, et al.Global antimicrobial-resistance drivers: an ecological country-level study at the human–animal interface.Lancet Planet Health 2023; 7(4):291-303.
[6]
Ikhimiukor OO, Odih EE, Donado-Godoy P, Okeke IN.A bottom-up view of antimicrobial resistance transmission in developing countries.Nat Microbiol 2022; 7(6):757-765.
[7]
Nadimpalli ML, Marks SJ, Montealegre MC, Gilman RH, Pajuelo MJ, Saito M, et al.Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission.Nat Microbiol 2020; 5(6):787-795.
[8]
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al.Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.Lancet Infect Dis 2016; 16(2):161-168.
[9]
Walsh TR, Weeks J, Livermore DM, Toleman MA.Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study.Lancet Infect Dis 2011; 11(5):355-362.
[10]
Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O, et al.Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage.Nat Commun 2019; 10(1):1124.
[11]
Kahn LH.Perspective: the one-health way.Nature 2017; 543(7647):S47.
[12]
Hernando-Amado S, Coque TM, Baquero F, Martínez JL.Defining and combating antibiotic resistance from One Health and Global Health perspectives.Nat Microbiol 2019; 4(9):1432-1442.
[13]
Zhu YG, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J.Human dissemination of genes and microorganisms in Earth’s critical zone.Glob Change Biol 2018; 24(4):1488-1499.
[14]
Zhu G, Wang X, Yang T, Su J, Qin Y, Wang S, et al.Air pollution could drive global dissemination of antibiotic resistance genes.ISME J 2021; 15(1):270-281.
[15]
Wu D, Jin L, Xie J, Liu H, Zhao J, Ye D, et al.Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks.Microbiome 2022; 10(1):19.
[16]
Jin L, Xie J, He T, Wu D, Li X.Airborne transmission as an integral environmental dimension of antimicrobial resistance through the “One Health” lens.Crit Rev Environ Sci Technol 2022; 52(23):4172-4193.
[17]
Sun J, Liao XP, D AW’Souza, Boolchandani M, Li SH, Cheng K, et al.Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms.Nat Commun 2020; 11(1):1427.
[18]
Mao Y, Ding P, Wang Y, Ding C, Wu L, Zheng P, et al.Comparison of culturable antibiotic-resistant bacteria in polluted and non-polluted air in Beijing, China.Environ Int 2019; 131:104936.
[19]
Zhou Z, Shuai X, Lin Z, Yu X, Ba X, Holmes MA, et al.Association between particulate matter (PM)2.5 air pollution and clinical antibiotic resistance: a global analysis.Lancet Planet Health 2023; 7(8):649-659.
[20]
Qian H, Xu S, Cao J, Ren F, Wei W, Meng J, et al.Air pollution reduction and climate co-benefits in China’s industries.Nat Sustain 2021; 4(5):417-425.
[21]
National Health Commission of the People’s Republic of China.Status report on antimicrobial administration and antimicrobial resistance in China. Report. Beijing: Peking Union Medical College Press; 2021.
[22]
Southerland VA, Brauer M, Mohegh A, Hammer MS, van Donkelaar A, Martin RV, et al.Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: estimates from global datasets.Lancet Planet Health 2022; 6(2):139-146.
[23]
Ren C, Zhou X, Wang C, Guo Y, Diao Y, Shen S, et al.Ageing threatens sustainability of smallholder farming in China.Nature 2023; 616(7955):96-103.
[24]
Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, et al.Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017.Lancet 2018; 392(10159):1923-1994.
[25]
Gu B, Zhang L, Van Dingenen R, Vieno M, Van Grinsven HJ, Zhang X, et al.Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution.Science 2021; 374(6568):758-762.
[26]
Cheng J, Tong D, Zhang Q, Liu Y, Lei Y, Yan G, et al.Pathways of China’s PM2.5 air quality 2015–2060 in the context of carbon neutrality.Nat Sci Rev 2021; 8(12):nwab078.
[27]
Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, et al.Ambient particulate air pollution and daily mortality in 652 cities.N Engl J Med 2019; 381(8):705-715.
[28]
Chen J, Liu YJ, Zhang ER, Pan T, Liu YH.Estimating China’s population over 21st century: spatially explicit scenarios consistent with the shared socioeconomic pathways (SSPs).Sustainability 2022; 14(4):2442.
[29]
Shen LY, Wei XL, Yin J, Haley DR, Sun Q, Lundborg CS.Interventions to optimize the use of antibiotics in China: a scoping review of evidence from humans, animals, and the environment from a One Health perspective.One Health 2022; 14:100388.
[30]
Shen Y, Wu Y, Chen G, Van Grinsven HJM, Wang X, Gu B, et al.Non-linear increase of respiratory diseases and their costs under severe air pollution.Environ Pollut 2017; 224:631-637.
[31]
Kirby T.WHO: 92% of the world’s population breathe polluted air.Lancet Respir Med 2016; 4(11):862.
[32]
Larsson DGJ, Flach CF.Antibiotic resistance in the environment.Nat Rev Microbiol 2022; 20(5):257-269.
[33]
Friedrich MJ.Antibiotic consumption increasing globally.JAMA 2018; 319(19):1973.
[34]
Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al.Global trends in antimicrobial use in food animals.Proc Natl Acad Sci USA 2015; 112(18):5649-5654.
[35]
Wang Y, Xu C, Zhang R, Chen Y, Shen Y, Hu F, et al.Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study.Lancet Infect Dis 2020; 20(10):1161-1171.
[36]
Schoenmakers K.How China is getting its farmers to kick their antibiotics habit.Nature 2020; 586(7830):S60-S62.
[37]
Cave R, Cole J, Mkrtchyan HV.Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: challenges and opportunities for hygiene and infection control.Environ Int 2021; 157:106836.
[38]
Barriere SL.Clinical, economic and societal impact of antibiotic resistance.Expert Opin Pharmacother 2015; 16(2):151-153.
[39]
Dyar OJ, Yang D, Yin J, Sun Q, St LCålsby.Variations in antibiotic prescribing among village doctors in a rural region of Shandong Province, China: a cross-sectional analysis of prescriptions.BMJ Open 2020; 10(6):036703.
[40]
Oliver A, Xue Z, Villanueva YT, Durbin-Johnson B, Alkan Z, Taft DH, et al.Association of diet and antimicrobial resistance in healthy U.S. adults.MBio 2022; 13(3):0010122.
[41]
Liu Y, Yang K, Jia Y, Shi J, Tong Z, Fang D, et al.Gut microbiome alterations in high-fat–diet-fed mice are associated with antibiotic tolerance.Nat Microbiol 2021; 6(7):874-884.
[42]
Zhang J, Ma X, Tang L, Tian D, Lin L, Li Y, et al.Pattern of antibiotic prescriptions in Chinese children, a cross-sectional survey from 17 hospitals located across 10 provinces of China.Front Pediatr 2022; 10:857945.
[43]
Xiao Y, Li L.China’s national plan to combat antimicrobial resistance.Lancet Infect Dis 2016; 16(11):1216-1218.
[44]
Yue HB, He CY, Huang QX, Yin D, Bryan BA.Stronger policy required to substantially reduce deaths from PM2.5 pollution in China.Nat Commun 2020; 11(1):1462.
[45]
Liu MY, Feng XL, Wang SG, Qiu HG.China’s poverty alleviation over the last 40 years: successes and challenges.Aust J Agric Resour Econ 2020; 64(1):209-228.
[46]
Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, et al.High secondary aerosol contribution to particulate pollution during haze events in China.Nature 2014; 514(7521):218-222.
[47]
Paul RJ, Varghese D.AMR in animal health: issues and one health solutions for LMICs.S. Thomas (Ed.), Antimicrobial resistance: global challenges and future interventions, Springer, Singapore 2020; 135-149.
PDF(1119 KB)

Accesses

Citation

Detail

段落导航
相关文章

/