光透明损耗薄膜上的低衰减端射漏波态

周子恒, 张永健, 郑依琳, 陈克, 高跃明, 葛悦禾, 李越, 冯一军, 陈志璋

工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 72-80.

PDF(2197 KB)
PDF(2197 KB)
工程(英文) ›› 2024, Vol. 43 ›› Issue (12) : 72-80. DOI: 10.1016/j.eng.2024.09.014
研究论文
Article

光透明损耗薄膜上的低衰减端射漏波态

作者信息 +

The Low-Attenuation Endfire Leaky-Wave State on an Optically Transparent Lossy Film

Author information +
History +

Abstract

The development of high-performance optically transparent radio frequency (RF) radiators is limited by the intrinsic loss issue of transparent conductive films (TCFs). Instead of pursuing expensive endeavors to improve the TCFs’ electrical properties, this study introduces an innovative approach that leverages leaky-wave mode manipulation to mitigate the TCFs’ attenuating effect and maximize the RF radiation. Our finding reveals that the precise control of the mode confinement on glass-coated TCFs can create a low-attenuation window for leaky-wave propagation, where the total attenuation caused by TCF dissipation and wave leakage is effectively reduced. The observed low-attenuation leaky-wave state on lossy TCFs originates from the delicate balance between wave leakage and TCF dissipation, attained at a particular glass cladding thickness. By leveraging the substantially extended radiation aperture achieved under suppressed wave attenuation, this study develops an optically transparent antenna with an enhanced endfire realized gain exceeding 15 dBi and a radiation efficiency of 66%, which is validated to offer competitive transmission performance for advancing ubiquitous wireless communication and sensing applications.

Keywords

Antennas / Endfire radiation / Low attenuation / Material losses / Transparent conductive films

引用本文

导出引用
周子恒, 张永健, 郑依琳. 光透明损耗薄膜上的低衰减端射漏波态. Engineering. 2024, 43(12): 72-80 https://doi.org/10.1016/j.eng.2024.09.014

参考文献

[1]
D.J. Griffiths. Introduction to electrodynamics. (3rd ed.), Prentice-Hall, Upper Saddle River (1999).
[2]
C.A. Balanis. Antenna theory: analysis and design. (3rd ed.), John Wiley & Sons, Hoboken (2005).
[3]
R. Mittra, A. Nasri, R.K. Arya. Wide-angle scanning antennas for millimeter-wave 5G applications. Engineering, 11 (2022), pp. 60-71.
[4]
A.N. Khan, Y.O. Cha, H. Giddens, Y. Hao. Recent advances in organ specific wireless bioelectronic devices: perspective on biotelemetry and power transfer using antenna systems. Engineering, 11 (2022), pp. 27-41.
[5]
W.K. Baek, H.S. Jung. Precise three-dimensional deformation retrieval in large and complex deformation areas via integration of offset-based unwrapping and improved multiple-aperture SAR interferometry: application to the 2016 Kumamoto earthquake. Engineering, 6 (2020), pp. 927-935.
[6]
M.T. Ghasr, M.J. Horst, M.R. Dvorsky, R. Zoughi. Wideband microwave camera for real-time 3-D imaging. IEEE Trans Antennas Propag, 65 (2017), pp. 258-268.
[7]
K. Ito. Compelling challenges in antenna technologies for future medical applications. Engineering, 11 (2022), pp. 15-17.
[8]
J. Liu, D.R. Jackson, Y. Long. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans Antennas Propag, 60 (2012), pp. 20-29.
[9]
Y. Hou, Y. Li, Z. Zhang, M.F. Iskander. All-metal endfire antenna with high gain and stable radiation pattern for the platform-embedded application. IEEE Trans Antennas Propag, 67 (2019), pp. 730-737.
[10]
X. Zhang, L. Sun, Y. Li, Z.A. Zhang. Grooved half-mode waveguide leaky-wave antenna for vertically-polarized endfire radiation. IEEE Trans Antennas Propag, 69 (2021), pp. 8229-8236.
[11]
J. Liu, D.R. Jackson, Y. Li, C. Zhang, Y. Long. Investigations of SIW leaky-wave antenna for endfire-radiation with narrow beam and sidelobe suppression. IEEE Trans Antennas Propag, 62 (2014), pp. 4489-4497.
[12]
W. Zhang, Y. Li, Z. Zhang. A Substrate integrated slot leaky-wave antenna for point-to-point communication. IEEE Trans Antennas Propag, 70 (2022), pp. 9888-9893.
[13]
L. Sun, P. Liu, Y. Li, L. Chang, K. Wei, Z. Zhang. Metal strip endfire antenna based on TE1 leaky-wave mode. IEEE Trans Antennas Propag, 68 (2020), pp. 5916-5923.
[14]
S. Ge, Q. Zhang, A.K. Rashid, Y. Zhang, H. Wang, R.D. Murch. General design technique for high-gain traveling-wave endfire antennas using periodic arbitrary-phase loading technique. IEEE Trans Antennas Propag, 69 (2021), pp. 3094-3105.
[15]
D.F. Sievenpiper. Superluminal waveguides based on non-foster circuits for broadband leaky-wave antennas. IEEE Antennas Wirel Propag Lett, 10 (2011), pp. 231-234.
[16]
M. Li, S.Q. Xiao, D.F. Sievenpiper. Polarization-insensitive holographic surfaces with broadside radiation. IEEE Trans Antennas Propag, 64 (12) (2016), pp. 5272-5280.
[17]
Y. Zhang, Y. Li. Wideband microstrip antenna in small volume without using fundamental mode. Electromag Sci, 1 (2) (2023), Article 0020073.
[18]
H. Li, Z. Zhou, Y. Zhao, Y. Li. Low-loss beam synthesizing network based on epsilon-near-zero (ENZ) medium for on-chip antenna array. Chip, 2 (2023), Article 100049.
[19]
H. Li, Z. Zhou, Y. He, W. Sun, Y. Li, I. Liberal, et al. Geometry-independent antenna based on Epsilon-near-zero medium. Nat Commun, 13: (2022), Article 3568.
[20]
P.F. Hu, K.W. Leung, K.M. Luk, Y.M. Pan, S.Y. Zheng. Diversity glass antennas for tri-band WiFi applications. Engineering, 23 (2023), pp. 157-169.
[21]
Y. Zhang, Y. Li, W. Zhang, Z. Zhang, Z. Feng. Omnidirectional antenna diversity system for high-speed onboard communication. Engineering, 11 (2022), pp. 72-79.
[22]
Z.X. Wang, H. Yang, R. Shao, J.W. Wu, G. Liu, F. Zhai, et al. A planar 4-bit reconfigurable antenna array based on the design philosophy of information metasurfaces. Engineering, 17 (2022), pp. 64-74.
[23]
G.V. Eleftheriades, M. Kim, V.G. Ataloglou, A.H. Dorrah. Prospects of Huygens’ metasurfaces for antenna applications. Engineering, 11 (2022), pp. 21-26.
[24]
W. Yang, K. Chen, J. Zhao, T. Jiang, Y. Feng. A wideband high-efficiency transmit-reflect-array antenna for bidirectional radiations with distinct circular polarizations based on a metasurface. IEEE Trans Antenna Propag, 71 (2023), pp. 3695-3700.
[25]
Z.J. Silva, C.R. Valenta, G.D. Durgin. Optically transparent antennas: a survey of transparent microwave conductor performance and applications. IEEE Antennas Propag Mag, 63 (2021), pp. 27-39.
[26]
S.Y. Lee, M. Choo, S. Jung, W. Hong. Optically transparent nano-patterned antennas: a review and future directions. Appl Sci, 8 (2018), p. 901.
[27]
O.R. Alobaidi, P. Chelvanathan, S.K. Tiong, B. Bais, M.A. Uzzaman, N. Amin. Transparent antenna for green communication feature: a systematic review on taxonomy analysis, open challenges, motivations, future directions and recommendations. IEEE Access, 10 (2022), pp. 12286-12321.
[28]
H.R. Zu, B. Wu, B. Chen, W.H. Li, T. Su, Y. Liu, et al. Optically and radiofrequency-transparent metadevices based on quasi-one-dimensional surface plasmon polariton structures. Nat Electron, 6 (2023), pp. 525-533.
[29]
Lombardi JP, Malay RE, Schaffner JH, Song HJ, Huang MH, Pollard SC, et al. Copper transparent antennas on flexible glass by subtractive and semi-additive fabrication for automotive applications. In: Proceedings of IEEE 68th Electronic Components and Technology Conference; 2018 May 29- Jun 1; San Diego, CA, USA; 2018.
[30]
Yasan E, Song HJ, Talty T, Schaffner JH, Carper D, Bekaryan A. Field performance of a novel wideband optically transparent GNSS antenna. In:Proceedings of 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting; 2019 Jul 7-12; Atlanta, GA, USA; 2019.
[31]
D. Potti, Y. Tusharika, MGN. Alsath, S. Kirubaveni, M. Kanagasabai, R. Sankararajan, et al. A Novel optically transparent UWB antenna for automotive MIMO communications. IEEE Trans Antennas Propag, 69 (2021), pp. 3821-3828.
[32]
Y.X. Sun, D. Wu, X.S. Fang, J. Ren. On-glass grid structure and its application in highly-transparent antenna for Internet of Vehicles. IEEE Trans Veh Technol, 72 (2023), pp. 93-101.
[33]
Z.G. Liu, C. Zhang, J.R. Yin, W.B. Lu. Multifunctional low-profile Fabry-Perot resonator antenna integrated with solar cells. IEEE Trans Antennas Propag, 70 (2022), pp. 7175-7180.
[34]
B. Xi, X. Liang, Q. Chen, K. Wang, J. Geng, R. Jin. Optical transparent antenna array integrated with solar cell. IEEE Antennas Wirel Propag Lett, 19 (2020), pp. 457-461.
[35]
T.D. Ha, L. Zhu, N. Alsaab, P.Y. Chen, J.L. Guo. Optically transparent metasurface radome for RCS reduction and gain enhancement of multifunctional antennas. IEEE Trans Antennas Propag, 71 (2023), pp. 67-77.
[36]
J. Oh, B. Kim, S. Yoon, K. Kim, E.J. Sung, J. Oh. High-gain millimeter-wave antenna-in-display using non-optical space for 5G smartphones. IEEE Trans Antennas Propag, 71 (2023), pp. 1458-1468.
[37]
M. Kim, D. Lee, Y. Oh, J.Y. Lee, B. Kim, J. Park. Antenna-on-display concept on an extremely thin substrate for sub-6 GHz wireless applications. IEEE Trans Antennas Propag, 70 (2022), pp. 5929-5934.
[38]
J. Park, S.Y. Lee, J. Kim, D. Park, W. Choi, W. Hong. An optically invisible antenna-on-display concept for millimeter-wave 5G cellular devices. IEEE Trans Antennas Propag, 67 (2019), pp. 2942-2952.
[39]
W. Hong, S. Lim, S. Ko, Y.G. Kim. Optically invisible antenna integrated within an OLED touch display panel for IoT applications. IEEE Trans Antennas Propag, 65 (2017), pp. 3750-3755.
[40]
S. Li, M. Tian, Q. Gao, M. Wang, T. Li, Q. Hu, et al. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat Mater, 18 (2019), pp. 1091-1097.
[41]
R.S. Datta, N. Syed, A. Zavabeti, A. Jannat, M. Mohiuddin, M. Rokunuzzaman, et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat Electron, 3 (2020), pp. 51-58.
[42]
T. Li, K. Chen, G. Ding, J. Zhao, T. Jiang, Y. Feng. Optically transparent metasurface salisbury screen with wideband microwave absorption. Opt Express, 26 (2018), pp. 34384-34395.
[43]
B. Chen, B. Wu, H.R. Zu, J.Q. Hou, T. Su. Experimental demonstration of high optically transparent reflectarrays using fine metal line structure. IEEE Trans Antennas Propag, 70 (2022), pp. 10504-10511.
[44]
C. Putzke, C. Guo, V. Plisson, M. Kroner, T. Chervy, M. Simoni, et al. Layered metals as polarized transparent conductors. Nat Commun, 14 (3147) (2023).
[45]
R.H. Fan, R.W. Peng, X.R. Huang, J. Li, Y. Liu, Q. Hu, et al. Transparent metals for ultrabroadband electromagnetic waves. Adv Mater, 24 (2012), pp. 1980-1986.
[46]
C. Ding, L. Liu, K.M. Luk. An optically transparent dual-polarized stacked patch antenna with metal-mesh films. IEEE Antennas Wirel Propag Lett, 18 (2019), pp. 1981-1985.
[47]
Song HJ, Schaffner JH, Son KA, Moon JS. Optically transparent Ku-band silver nanowire frequency selective surface on glass substrate. In: Proceedings of 2014 IEEE Antennas and Propagation Society International Symposium; 2014 Jul 6-11; Memphis, TN, USA; 2014.
[48]
Song HJ, Schaffner JH, Bekaryan A, O’Connor K, Tombs T, Talty T, et al. Roll-to-roll printed transparent applique antennas. In: Proceedings of 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting; 2018 Jul 8-13; Boston, MA, USA; 2018.
[49]
P.D. Tung, C.W. Jung. Optically transparent wideband dipole and patch external antennas using metal mesh for UHD TV applications. IEEE Trans Antennas Propag, 68 (2020), pp. 1907-1917.
[50]
Y. Yao, W. Chen, X. Chen, J. Yu. Design of optically transparent antenna with directional radiation patterns. Int J Antenn Propag, 8125432 (2017).
[51]
S. Hong, Y. Kim, C.W. Jung. Transparent microstrip patch antennas with multilayer and metal-mesh films. IEEE Antennas Wirel Propag Lett, 16 (2017), pp. 772-775.
[52]
Y. Shi, W.J. Wang, T.T. Hu. A transparent SIW cavity-based millimeter-wave slot antenna for 5G communication. IEEE Antennas Wirel Propag Lett, 21 (2022), pp. 1105-1109.
[53]
S.H. Kang, C.W. Jung. Transparent patch antenna using metal mesh. IEEE Trans Antennas Propag, 66 (2018), pp. 2095-2100.
[54]
J. Hautcoeur, F. Colombel, M. Himdi, X. Castel, E.M. Cruz. Large and optically transparent multilayer for broadband H-shaped slot antenna. IEEE Antennas Wirel Propag Lett, 12 (2013), pp. 933-936.
[55]
H. Qiu, H. Liu, X. Jia, Z.Y. Jiang, Y.H. Liu, J. Xu, et al. Compact, flexible, and transparent antennas based on embedded metallic mesh for wearable devices in 5G wireless network. IEEE Trans Antennas Propag, 69 (2021), pp. 1864-1873.
[56]
H.J. Song, T.Y. Hsu, D.F. Sievenpiper, H.P. Hsu, J. Schaffner, E. Yasan. A method for improving the efficiency of transparent film antennas. IEEE Antennas Wirel Propag Lett, 7 (2008), pp. 753-756.
[57]
M.R. Haraty, M. Naser-Moghadasi, A.A. Lotfi-Neyestanak, A. Nikfarjam. Improving the efficiency of transparent antenna using gold nanolayer deposition. IEEE Antennas Wirel Propag Lett, 15 (2016), pp. 4-7.
[58]
L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H.T. Zhang, et al. Correlated metals as transparent conductors. Nat Mater, 15 (2016), pp. 204-210.
[59]
D.M. Pozar. Microwave engineering chapter 3 (4th ed.), John Wiley & Sons, Hoboken (2011).
[60]
R.E. Collin. Field theory of guided waves chapter 4 (2nd ed.), IEEE Press, Piscataway (1991).
[61]
Y. Li, I. Liberal, N. Engheta. Structural dispersion-based reduction of loss in epsilon-near-zero and surface plasmon polariton waves. Sci Adv, 5 (2019), Article eaav3764.
[62]
H.L. Bertoni. Radio propagation for modern wireless systems. Prentice-Hall, Upper Saddle River (2000).
[63]
J.B. Pendry, L. Martín-Moreno, F.J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305 (5685) (2004), pp. 847-848.
[64]
X. Shen, T.J. Cui, D. Martin-Cano, F.J. Garcia-Vidal. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 110 (1) (2013), pp. 40-45.
[65]
X. Gao, Q. Ma, Z. Gu, W.Y. Cui, C. Liu, J. Zhang, et al. Programmable surface plasmonic neural networks for microwave detection and processing. Nat Electron, 6 (2023), pp. 319-328.
[66]
J. Li, Y. Yuan, Q. Wu, K. Zhang. Bi-isotropic Huygens’ metasurface for polarization-insensitive cross-polarization conversion and wavefront manipulation. IEEE Trans Antennas Propag, 72 (3) (2024), pp. 2445-2454.
[67]
Y. Yuan, Q. Wu, S.N. Burokur, K. Zhang. Chirality-assisted phase metasurface for circular polarization preservation and independent hologram imaging in microwave region. IEEE Trans Microw Theory Techn, 71 (8) (2023), pp. 3259-3272.
[68]
Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurface. Nat Commun, 11 (2020), p. 4168.
PDF(2197 KB)

Accesses

Citation

Detail

段落导航
相关文章

/