[1] |
D.J. Griffiths. Introduction to electrodynamics. (3rd ed.), Prentice-Hall, Upper Saddle River (1999).
|
[2] |
C.A. Balanis. Antenna theory: analysis and design. (3rd ed.), John Wiley & Sons, Hoboken (2005).
|
[3] |
R. Mittra, A. Nasri, R.K. Arya. Wide-angle scanning antennas for millimeter-wave 5G applications. Engineering, 11 (2022), pp. 60-71.
|
[4] |
A.N. Khan, Y.O. Cha, H. Giddens, Y. Hao. Recent advances in organ specific wireless bioelectronic devices: perspective on biotelemetry and power transfer using antenna systems. Engineering, 11 (2022), pp. 27-41.
|
[5] |
W.K. Baek, H.S. Jung. Precise three-dimensional deformation retrieval in large and complex deformation areas via integration of offset-based unwrapping and improved multiple-aperture SAR interferometry: application to the 2016 Kumamoto earthquake. Engineering, 6 (2020), pp. 927-935.
|
[6] |
M.T. Ghasr, M.J. Horst, M.R. Dvorsky, R. Zoughi. Wideband microwave camera for real-time 3-D imaging. IEEE Trans Antennas Propag, 65 (2017), pp. 258-268.
|
[7] |
K. Ito. Compelling challenges in antenna technologies for future medical applications. Engineering, 11 (2022), pp. 15-17.
|
[8] |
J. Liu, D.R. Jackson, Y. Long. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans Antennas Propag, 60 (2012), pp. 20-29.
|
[9] |
Y. Hou, Y. Li, Z. Zhang, M.F. Iskander. All-metal endfire antenna with high gain and stable radiation pattern for the platform-embedded application. IEEE Trans Antennas Propag, 67 (2019), pp. 730-737.
|
[10] |
X. Zhang, L. Sun, Y. Li, Z.A. Zhang. Grooved half-mode waveguide leaky-wave antenna for vertically-polarized endfire radiation. IEEE Trans Antennas Propag, 69 (2021), pp. 8229-8236.
|
[11] |
J. Liu, D.R. Jackson, Y. Li, C. Zhang, Y. Long. Investigations of SIW leaky-wave antenna for endfire-radiation with narrow beam and sidelobe suppression. IEEE Trans Antennas Propag, 62 (2014), pp. 4489-4497.
|
[12] |
W. Zhang, Y. Li, Z. Zhang. A Substrate integrated slot leaky-wave antenna for point-to-point communication. IEEE Trans Antennas Propag, 70 (2022), pp. 9888-9893.
|
[13] |
L. Sun, P. Liu, Y. Li, L. Chang, K. Wei, Z. Zhang. Metal strip endfire antenna based on TE1 leaky-wave mode. IEEE Trans Antennas Propag, 68 (2020), pp. 5916-5923.
|
[14] |
S. Ge, Q. Zhang, A.K. Rashid, Y. Zhang, H. Wang, R.D. Murch. General design technique for high-gain traveling-wave endfire antennas using periodic arbitrary-phase loading technique. IEEE Trans Antennas Propag, 69 (2021), pp. 3094-3105.
|
[15] |
D.F. Sievenpiper. Superluminal waveguides based on non-foster circuits for broadband leaky-wave antennas. IEEE Antennas Wirel Propag Lett, 10 (2011), pp. 231-234.
|
[16] |
M. Li, S.Q. Xiao, D.F. Sievenpiper. Polarization-insensitive holographic surfaces with broadside radiation. IEEE Trans Antennas Propag, 64 (12) (2016), pp. 5272-5280.
|
[17] |
Y. Zhang, Y. Li. Wideband microstrip antenna in small volume without using fundamental mode. Electromag Sci, 1 (2) (2023), Article 0020073.
|
[18] |
H. Li, Z. Zhou, Y. Zhao, Y. Li. Low-loss beam synthesizing network based on epsilon-near-zero (ENZ) medium for on-chip antenna array. Chip, 2 (2023), Article 100049.
|
[19] |
H. Li, Z. Zhou, Y. He, W. Sun, Y. Li, I. Liberal, et al. Geometry-independent antenna based on Epsilon-near-zero medium. Nat Commun, 13: (2022), Article 3568.
|
[20] |
P.F. Hu, K.W. Leung, K.M. Luk, Y.M. Pan, S.Y. Zheng. Diversity glass antennas for tri-band WiFi applications. Engineering, 23 (2023), pp. 157-169.
|
[21] |
Y. Zhang, Y. Li, W. Zhang, Z. Zhang, Z. Feng. Omnidirectional antenna diversity system for high-speed onboard communication. Engineering, 11 (2022), pp. 72-79.
|
[22] |
Z.X. Wang, H. Yang, R. Shao, J.W. Wu, G. Liu, F. Zhai, et al. A planar 4-bit reconfigurable antenna array based on the design philosophy of information metasurfaces. Engineering, 17 (2022), pp. 64-74.
|
[23] |
G.V. Eleftheriades, M. Kim, V.G. Ataloglou, A.H. Dorrah. Prospects of Huygens’ metasurfaces for antenna applications. Engineering, 11 (2022), pp. 21-26.
|
[24] |
W. Yang, K. Chen, J. Zhao, T. Jiang, Y. Feng. A wideband high-efficiency transmit-reflect-array antenna for bidirectional radiations with distinct circular polarizations based on a metasurface. IEEE Trans Antenna Propag, 71 (2023), pp. 3695-3700.
|
[25] |
Z.J. Silva, C.R. Valenta, G.D. Durgin. Optically transparent antennas: a survey of transparent microwave conductor performance and applications. IEEE Antennas Propag Mag, 63 (2021), pp. 27-39.
|
[26] |
S.Y. Lee, M. Choo, S. Jung, W. Hong. Optically transparent nano-patterned antennas: a review and future directions. Appl Sci, 8 (2018), p. 901.
|
[27] |
O.R. Alobaidi, P. Chelvanathan, S.K. Tiong, B. Bais, M.A. Uzzaman, N. Amin. Transparent antenna for green communication feature: a systematic review on taxonomy analysis, open challenges, motivations, future directions and recommendations. IEEE Access, 10 (2022), pp. 12286-12321.
|
[28] |
H.R. Zu, B. Wu, B. Chen, W.H. Li, T. Su, Y. Liu, et al. Optically and radiofrequency-transparent metadevices based on quasi-one-dimensional surface plasmon polariton structures. Nat Electron, 6 (2023), pp. 525-533.
|
[29] |
Lombardi JP, Malay RE, Schaffner JH, Song HJ, Huang MH, Pollard SC, et al. Copper transparent antennas on flexible glass by subtractive and semi-additive fabrication for automotive applications. In: Proceedings of IEEE 68th Electronic Components and Technology Conference; 2018 May 29- Jun 1; San Diego, CA, USA; 2018.
|
[30] |
Yasan E, Song HJ, Talty T, Schaffner JH, Carper D, Bekaryan A. Field performance of a novel wideband optically transparent GNSS antenna. In:Proceedings of 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting; 2019 Jul 7-12; Atlanta, GA, USA; 2019.
|
[31] |
D. Potti, Y. Tusharika, MGN. Alsath, S. Kirubaveni, M. Kanagasabai, R. Sankararajan, et al. A Novel optically transparent UWB antenna for automotive MIMO communications. IEEE Trans Antennas Propag, 69 (2021), pp. 3821-3828.
|
[32] |
Y.X. Sun, D. Wu, X.S. Fang, J. Ren. On-glass grid structure and its application in highly-transparent antenna for Internet of Vehicles. IEEE Trans Veh Technol, 72 (2023), pp. 93-101.
|
[33] |
Z.G. Liu, C. Zhang, J.R. Yin, W.B. Lu. Multifunctional low-profile Fabry-Perot resonator antenna integrated with solar cells. IEEE Trans Antennas Propag, 70 (2022), pp. 7175-7180.
|
[34] |
B. Xi, X. Liang, Q. Chen, K. Wang, J. Geng, R. Jin. Optical transparent antenna array integrated with solar cell. IEEE Antennas Wirel Propag Lett, 19 (2020), pp. 457-461.
|
[35] |
T.D. Ha, L. Zhu, N. Alsaab, P.Y. Chen, J.L. Guo. Optically transparent metasurface radome for RCS reduction and gain enhancement of multifunctional antennas. IEEE Trans Antennas Propag, 71 (2023), pp. 67-77.
|
[36] |
J. Oh, B. Kim, S. Yoon, K. Kim, E.J. Sung, J. Oh. High-gain millimeter-wave antenna-in-display using non-optical space for 5G smartphones. IEEE Trans Antennas Propag, 71 (2023), pp. 1458-1468.
|
[37] |
M. Kim, D. Lee, Y. Oh, J.Y. Lee, B. Kim, J. Park. Antenna-on-display concept on an extremely thin substrate for sub-6 GHz wireless applications. IEEE Trans Antennas Propag, 70 (2022), pp. 5929-5934.
|
[38] |
J. Park, S.Y. Lee, J. Kim, D. Park, W. Choi, W. Hong. An optically invisible antenna-on-display concept for millimeter-wave 5G cellular devices. IEEE Trans Antennas Propag, 67 (2019), pp. 2942-2952.
|
[39] |
W. Hong, S. Lim, S. Ko, Y.G. Kim. Optically invisible antenna integrated within an OLED touch display panel for IoT applications. IEEE Trans Antennas Propag, 65 (2017), pp. 3750-3755.
|
[40] |
S. Li, M. Tian, Q. Gao, M. Wang, T. Li, Q. Hu, et al. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat Mater, 18 (2019), pp. 1091-1097.
|
[41] |
R.S. Datta, N. Syed, A. Zavabeti, A. Jannat, M. Mohiuddin, M. Rokunuzzaman, et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat Electron, 3 (2020), pp. 51-58.
|
[42] |
T. Li, K. Chen, G. Ding, J. Zhao, T. Jiang, Y. Feng. Optically transparent metasurface salisbury screen with wideband microwave absorption. Opt Express, 26 (2018), pp. 34384-34395.
|
[43] |
B. Chen, B. Wu, H.R. Zu, J.Q. Hou, T. Su. Experimental demonstration of high optically transparent reflectarrays using fine metal line structure. IEEE Trans Antennas Propag, 70 (2022), pp. 10504-10511.
|
[44] |
C. Putzke, C. Guo, V. Plisson, M. Kroner, T. Chervy, M. Simoni, et al. Layered metals as polarized transparent conductors. Nat Commun, 14 (3147) (2023).
|
[45] |
R.H. Fan, R.W. Peng, X.R. Huang, J. Li, Y. Liu, Q. Hu, et al. Transparent metals for ultrabroadband electromagnetic waves. Adv Mater, 24 (2012), pp. 1980-1986.
|
[46] |
C. Ding, L. Liu, K.M. Luk. An optically transparent dual-polarized stacked patch antenna with metal-mesh films. IEEE Antennas Wirel Propag Lett, 18 (2019), pp. 1981-1985.
|
[47] |
Song HJ, Schaffner JH, Son KA, Moon JS. Optically transparent Ku-band silver nanowire frequency selective surface on glass substrate. In: Proceedings of 2014 IEEE Antennas and Propagation Society International Symposium; 2014 Jul 6-11; Memphis, TN, USA; 2014.
|
[48] |
Song HJ, Schaffner JH, Bekaryan A, O’Connor K, Tombs T, Talty T, et al. Roll-to-roll printed transparent applique antennas. In: Proceedings of 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting; 2018 Jul 8-13; Boston, MA, USA; 2018.
|
[49] |
P.D. Tung, C.W. Jung. Optically transparent wideband dipole and patch external antennas using metal mesh for UHD TV applications. IEEE Trans Antennas Propag, 68 (2020), pp. 1907-1917.
|
[50] |
Y. Yao, W. Chen, X. Chen, J. Yu. Design of optically transparent antenna with directional radiation patterns. Int J Antenn Propag, 8125432 (2017).
|
[51] |
S. Hong, Y. Kim, C.W. Jung. Transparent microstrip patch antennas with multilayer and metal-mesh films. IEEE Antennas Wirel Propag Lett, 16 (2017), pp. 772-775.
|
[52] |
Y. Shi, W.J. Wang, T.T. Hu. A transparent SIW cavity-based millimeter-wave slot antenna for 5G communication. IEEE Antennas Wirel Propag Lett, 21 (2022), pp. 1105-1109.
|
[53] |
S.H. Kang, C.W. Jung. Transparent patch antenna using metal mesh. IEEE Trans Antennas Propag, 66 (2018), pp. 2095-2100.
|
[54] |
J. Hautcoeur, F. Colombel, M. Himdi, X. Castel, E.M. Cruz. Large and optically transparent multilayer for broadband H-shaped slot antenna. IEEE Antennas Wirel Propag Lett, 12 (2013), pp. 933-936.
|
[55] |
H. Qiu, H. Liu, X. Jia, Z.Y. Jiang, Y.H. Liu, J. Xu, et al. Compact, flexible, and transparent antennas based on embedded metallic mesh for wearable devices in 5G wireless network. IEEE Trans Antennas Propag, 69 (2021), pp. 1864-1873.
|
[56] |
H.J. Song, T.Y. Hsu, D.F. Sievenpiper, H.P. Hsu, J. Schaffner, E. Yasan. A method for improving the efficiency of transparent film antennas. IEEE Antennas Wirel Propag Lett, 7 (2008), pp. 753-756.
|
[57] |
M.R. Haraty, M. Naser-Moghadasi, A.A. Lotfi-Neyestanak, A. Nikfarjam. Improving the efficiency of transparent antenna using gold nanolayer deposition. IEEE Antennas Wirel Propag Lett, 15 (2016), pp. 4-7.
|
[58] |
L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H.T. Zhang, et al. Correlated metals as transparent conductors. Nat Mater, 15 (2016), pp. 204-210.
|
[59] |
D.M. Pozar. Microwave engineering chapter 3 (4th ed.), John Wiley & Sons, Hoboken (2011).
|
[60] |
R.E. Collin. Field theory of guided waves chapter 4 (2nd ed.), IEEE Press, Piscataway (1991).
|
[61] |
Y. Li, I. Liberal, N. Engheta. Structural dispersion-based reduction of loss in epsilon-near-zero and surface plasmon polariton waves. Sci Adv, 5 (2019), Article eaav3764.
|
[62] |
H.L. Bertoni. Radio propagation for modern wireless systems. Prentice-Hall, Upper Saddle River (2000).
|
[63] |
J.B. Pendry, L. Martín-Moreno, F.J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305 (5685) (2004), pp. 847-848.
|
[64] |
X. Shen, T.J. Cui, D. Martin-Cano, F.J. Garcia-Vidal. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 110 (1) (2013), pp. 40-45.
|
[65] |
X. Gao, Q. Ma, Z. Gu, W.Y. Cui, C. Liu, J. Zhang, et al. Programmable surface plasmonic neural networks for microwave detection and processing. Nat Electron, 6 (2023), pp. 319-328.
|
[66] |
J. Li, Y. Yuan, Q. Wu, K. Zhang. Bi-isotropic Huygens’ metasurface for polarization-insensitive cross-polarization conversion and wavefront manipulation. IEEE Trans Antennas Propag, 72 (3) (2024), pp. 2445-2454.
|
[67] |
Y. Yuan, Q. Wu, S.N. Burokur, K. Zhang. Chirality-assisted phase metasurface for circular polarization preservation and independent hologram imaging in microwave region. IEEE Trans Microw Theory Techn, 71 (8) (2023), pp. 3259-3272.
|
[68] |
Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurface. Nat Commun, 11 (2020), p. 4168.
|