基于时间演化的轨道角动量模式复用信道深度路由

黄泽斌, 王佩佩, 陈嘉富, 熊文杰, 叶华朋, 周新星, 董泽, 范滇元, 陈书青

工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 97-104.

PDF(1800 KB)
PDF(1800 KB)
工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 97-104. DOI: 10.1016/j.eng.2024.09.016
研究论文
Article

基于时间演化的轨道角动量模式复用信道深度路由

作者信息 +

Time Evolution of Orbital Angular Momentum Modes for Deep-Routing Multiplexing Channels

Author information +
History +

摘要

光学轨道角动量(OAM)模式多路复用通信技术已成为提升通信容量的前沿技术之一。然而,当前研究大多聚焦于模式信道的(解)复用,而忽略了信道路由这一关键环节。这一挑战的核心在于复用OAM模式在空间和时间域的重新分配,这是构建多功能模分通信网络的关键步骤。为填补这一研究空白,我们借助幺正变换的正交转换与衍射调制能力,提出了一种基于OAM模式时间演化的创新方法。该方法能够对OAM模式矢量进行高维度的正交变换,进而改变光束的传播方向和空间位置。通过运用菲涅尔衍射矩阵作为幺正算子,我们可以在传输过程中操控光束的空间位置,打破光束传播的不变性,实现时间演化。在实验演示中,我们成功在两个不同的时间序列内实现了四种OAM模式的深度路由。我们还实现了由四个复用OAM信道承载的4.69 Tbit/s正交相移键控(QPSK)信号的深度路由,平均衍射效率超过78.31%,误码率低于10-6。这些成果不仅彰显了我们路由策略的有效性,更预示着其在实际应用中的广阔前景。

Abstract

Optical orbital angular momentum (OAM) mode multiplexing has emerged as a promising technique for boosting communication capacity. However, most existing studies have concentrated on channel (de)multiplexing, overlooking the critical aspect of channel routing. This challenge involves the reallocation of multiplexed OAM modes across both spatial and temporal domains—a vital step for developing versatile communication networks. To address this gap, we introduce a novel approach based on the time evolution of OAM modes, utilizing the orthogonal conversion and diffractive modulation capabilities of unitary transformations. This approach facilitates high-dimensional orthogonal transformations of OAM mode vectors, altering both the propagation direction and the spatial location. Using Fresnel diffraction matrices as unitary operators, it manipulates the spatial locations of light beams during transmission, breaking the propagation invariance and enabling temporal evolution. As a demonstration, we have experimentally implemented the deep routing of four OAM modes within two distinct time sequences. Achieving an average diffraction efficiency above 78.31%, we have successfully deep-routed 4.69 Tbit·s−1 quadrature phase-shift keying (QPSK) signals carried by four multiplexed OAM channels, with a bit error rate below 10–6. These results underscore the efficacy of our routing strategy and its promising prospects for practical applications.

关键词

轨道角动量 / 时间演化调制 / 深度路由技术 / 幺正变换 / 模分复用通信网络

Keywords

Orbital angular momentum / Time evolution modulation / Deep-routing technology / Unitary transformation / Mode-division communication networks

引用本文

导出引用
黄泽斌, 王佩佩, 陈嘉富. 基于时间演化的轨道角动量模式复用信道深度路由. Engineering. 2025, 45(2): 97-104 https://doi.org/10.1016/j.eng.2024.09.016

参考文献

[1]
Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, et al.Optical communications using orbital angular momentum beams.Adv Opt Photonics 2015; 7(1):66-106.
[2]
Wang J, Liu J, Li S, Zhao Y, Du J, Zhu L.Orbital angular momentum and beyond in free-space optical communications.Nanophotonics 2022; 11(4):645-680.
[3]
Gong L, Zhao Q, Zhang H, Hu XY, Huang K, Yang JM, et al.Optical orbital-angular-momentum-multiplexed data transmission under high scattering.Light Sci Appl 2019; 8:27.
[4]
Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP.Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes.Phys Rev A 1992; 45(11):8185-8189.
[5]
Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, et al.Catenary optics for achromatic generation of perfect optical angular momentum.Sci Adv 2015; 1(9):e1500396.
[6]
Meng W, Hua Y, Cheng K, Li B, Liu T, Chen Q, et al.100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution.Opto Electronic Sci. 2022; 1(9):220004.
[7]
Willner AE, Pang K, Song H, Zou K, Zhou H.Orbital angular momentum of light for communications.Appl Phys Rev 2021; 8(4):041312.
[8]
He Y, Wang P, Wang C, Liu J, Ye H, Zhou X, et al.All-optical signal processing in structured light multiplexing with dielectric meta-optics.ACS Photonics 2020; 7(1):135-146.
[9]
Wang J, Chen S, Liu J.Orbital angular momentum communications based on standard multi-mode fiber.APL Photonics 2021; 6(6):060804.
[10]
Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, et al.Terabit free-space data transmission employing orbital angular momentum multiplexing.Nat Photonics 2012; 6(7):488-496.
[11]
Shi C, Dubois M, Wang Y, Zhang X.High-speed acoustic communication by multiplexing orbital angular momentum.Proc Natl Acad Sci USA 2017; 114(28):7250-7253.
[12]
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, et al.Terabit-scale orbital angular momentum mode division multiplexing in fibers.Science 2013; 340(6140):1545-1548.
[13]
Liu S, Lou Y, Jing J.Orbital angular momentum multiplexed deterministic all-optical quantum teleportation.Nat Commun 2020; 11:3875.
[14]
Yu S.Potentials and challenges of using orbital angular momentum communications in optical interconnects.Opt Express 2015; 23(3):3075-3087.
[15]
Ren Y, Wang Z, Xie G, Li L, Cao Y, Liu C, et al.Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing.Opt Lett 2015; 40(18):4210-4213.
[16]
Ouyang X, Xu Y, Xian M, Feng Z, Zhu L, Cao Y, et al.Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing.Nat Photonics 2021; 15(12):901-907.
[17]
Chen S, Xie Z, Ye H, Wang X, Guo Z, He Y, et al.Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control.Light Sci Appl 2021; 10:222.
[18]
Li Y, Li X, Chen L, Pu M, Jin J, Hong M, et al.Orbital angular momentum multiplexing and demultiplexing by a single metasurface.Adv Opt Mater 2017; 5(2):1600502.
[19]
Fang X, Yang H, Yao W, Wang T, Zhang Y, Gu M, et al.High-dimensional orbital angular momentum multiplexing nonlinear holography.Adv Photonics 2021; 3(1):15001.
[20]
Fang J, Li J, Kong A, Xie Y, Lin C, Xie Z, et al.Optical orbital angular momentum multiplexing communication via inversely-designed multiphase plane light conversion.Photon Res 2022; 10(9):2015-2023.
[21]
Yan Y, Xie G, Lavery MPJ, Huang H, Ahmed N, Bao C, et al.High-capacity millimetre-wave communications with orbital angular momentum multiplexing.Nat Commun 2014; 5:4876.
[22]
Zhang Y, Xu M, Pu M, Zhou M, Ding J, Chen S, et al.Simultaneously enhancing capacity and security in free-space optical chaotic communication utilizing orbital angular momentum.Photon Res 2023; 11(12):2185-2193.
[23]
Wu H, Zeng Q, Wang X, Li C, Huang Z, Xie Z, et al.Polarization-dependent phase-modulation metasurface for vortex beam (de)multiplexing.Nanophotonics 2023; 12(6):1129-1135.
[24]
Lei T, Zhang M, Li Y, Jia P, Liu GN, Xu X, et al.Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings.Light Sci Appl 2015; 4(3):e257.
[25]
Berkhout GCG, Lavery MPJ, Courtial J, Beijersbergen MW, Padgett MJ.Efficient sorting of orbital angular momentum states of light.Phys Rev Lett 2010; 105(15):153601.
[26]
Xie Z, He Y, Wang X, Wu H, Li C, Ye H, et al.Phase off-axis modulation metasurface for orbital angular momentum mode multiplexing/demultiplexing.J Light Technol 2023; 41(2):540-546.
[27]
Liu J, Wang J.Demonstration of reconfigurable joint orbital angular momentum mode and space switching.Sci Rep 2016; 6:37331.
[28]
Gao S, Lei T, Li Y, Yuan Y, Xie Z, Li Z, et al.OAM-labeled free-space optical flow routing.Opt Express 2016; 24(19):21642-21651.
[29]
Lei T, Gao S, Li Z, Yuan Y, Li Y, Zhang M, et al.Fast-switchable OAM-based high capacity density optical router.IEEE Photonics J 2017; 9(1):7901409.
[30]
Li L, Guo Y, Zhang Z, Shang Z, Li C, Wang J, et al.Photon total angular momentum manipulation.Adv Photonics 2023; 5(5):56002.
[31]
Lv Y, Shang Z, Fu S, Huang L, Gao L, Gao C.Sorting orbital angular momentum of photons through a multi-ring azimuthal-quadratic phase.Opt Lett 2022; 47(19):5032-5035.
[32]
Huang H, Yue Y, Yan Y, Ahmed N, Ren Y, Tur M, et al.Liquid-crystal-on-silicon-based optical add/drop multiplexer for orbital-angular-momentum-multiplexed optical links.Opt Lett 2013; 38(23):5142-5145.
[33]
Willner AE, Li L, Xie G, Ren Y, Huang H, Yue Y, et al.Orbital-angular-momentum-based reconfigurable optical switching and routing.Photon Res 2016; 4(5):B5-B8.
[34]
Malik MN, Zhang N, Toccafondo V, Klitis C, Lavery M, Sgambelluri A, et al.Tunable orbital angular momentum converter based on integrated multiplexers.J Light Technol 2020; 39(1):91-97.
[35]
Xiong W, Huang Z, Wang P, Wang X, He Y, Wang C, et al.Optical diffractive deep neural network-based orbital angular momentum mode add–drop multiplexer.Opt Express 2021; 29(22):36936-36952.
[36]
He Y, Wang X, Yang B, Cheng M, Xie Z, Wang P, et al.All-optical cross-connection of cylindrical vector beam multiplexing channels.J Light Technol 2022; 40(15):5070-5076.
[37]
Deng D, Li Y, Han Y, Su X, Ye J, Gao J, et al.Perfect vortex in three-dimensional multifocal array.Opt Express 2016; 24(25):28270-28278.
[38]
Zhang Y, Liu W, Gao J, Yang X.Generating focused 3D perfect vortex beams by plasmonic metasurfaces.Adv Opt Mater 2018; 6(4):1701228.
[39]
Zheng R, Pan R, Geng G, Jiang Q, Du S, Huang L, et al.Active multiband varifocal metalenses based on orbital angular momentum division multiplexing.Nat Commun 2022; 13:4292.
[40]
Morizur JF, Nicholls L, Jian P, Armstrong S, Treps N, Hage B, et al.Programmable unitary spatial mode manipulation.J Opt Soc Am A Opt Image Sci Vis 2010; 27(11):2524-2531.
[41]
Bisio A, Chiribella G, D GM’Ariano, Facchini S, Perinotti P.Optimal quantum learning of a unitary transformation.Phys Rev A 2010; 81(3):032324.
[42]
Zheng S, Xu S, Fan D.Orthogonality of diffractive deep neural network.Opt Lett 2022; 47(7):1798-1801.
[43]
Li J, Hung YC, Kulce O, Mengu D, Ozcan A.Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network.Light Sci Appl 2022; 11:153.
[44]
Rahman MSS, Gan T, Deger EA, ÇI şıl, Jarrahi M, Ozcan A.Learning diffractive optical communication around arbitrary opaque occlusions.Nat Commun 2023; 14:6830.
[45]
Li J, Gan T, Bai B, Luo Y, Jarrahi M, Ozcan A.Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network.Adv Photonics 2023; 5(1):16003.
[46]
Huang Z, Wang P, Liu J, Xiong W, He Y, Xiao J, et al.All-optical signal processing of vortex beams with diffractive deep neural networks.Phys Rev Appl 2021; 15(1):014037.
[47]
Wang P, Xiong W, Huang Z, He Y, Xie Z, Liu J, et al.Orbital angular momentum mode logical operation using optical diffractive neural network.Photon Res 2021; 9(10):2116-2124.
[48]
Wang P, Xiong W, Huang Z, He Y, Liu J, Ye H, et al.Diffractive deep neural network for optical orbital angular momentum multiplexing and demultiplexing.IEEE J Sel Top Quantum Electron 2021; 28(4):7500111.
[49]
Zhang J, Ye Z, Yin J, Lang L, Jiao S.Polarized deep diffractive neural network for sorting, generation, multiplexing, and de-multiplexing of orbital angular momentum modes.Opt Express 2022; 30(15):26728-26741.
[50]
Liu Z, Gao S, Lai Z, Li Y, Ao Z, Li J, et al.Broadband, low-crosstalk, and massive-channels OAM modes de/multiplexing based on optical diffraction neural network.Laser Photonics Rev 2023; 17(4):2200536.
[51]
Huang Z, He Y, Wang P, Xiong W, Wu H, Liu J, et al.Orbital angular momentum deep multiplexing holography via an optical diffractive neural network.Opt Express 2022; 30(4):5569-5584.
[52]
Wang F, Zhang X, Xiong R, Ma X, Li L, Jiang X.Depth multiplexing in an orbital angular momentum holography based on random phase encoding.Opt Express 2022; 30(18):31863-31871.
[53]
He C, Zhao D, Fan F, Zhou H, Li X, Li Y, et al.Pluggable multitask diffractive neural networks based on cascaded metasurfaces.Opto Electronic Adv 2024; 7:230005.
[54]
Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al.All-optical machine learning using diffractive deep neural networks.Science 2018; 361(6406):1004-1008.
[55]
Yan T, Wu J, Zhou T, Xie H, Xu F, Fan J, et al.Fourier-space diffractive deep neural network.Phys Rev Lett 2019; 123(2):23901.
[56]
Chen H, Feng J, Jiang M, Wang Y, Lin J, Tan J, et al.Diffractive deep neural networks at visible wavelengths.Engineering 2021; 7(10):1483-1491.
[57]
Liu C, Ma Q, Luo ZJ, Hong QR, Xiao Q, Zhang HC, et al.A programmable diffractive deep neural network based on a digital-coding metasurface array.Nat Electron 2022; 5(2):113-122.
[58]
Goi E, Schoenhardt S, Gu M.Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks.Nat Commun 2022; 13:7531.
[59]
LeCun Y, Bengio Y, Hinton G.Deep learning.Nature 2015; 521(7553):436-444.
[60]
Huang H, Ren Y, Xie G, Yan Y, Yue Y, Ahmed N, et al.Tunable orbital angular momentum mode filter based on optical geometric transformation.Opt Lett 2014; 39(6):1689-1692.
[61]
He Y, Huang Z, Li C, Yang B, Xie Z, Wu H, et al.Adding/dropping polarization multiplexed cylindrical vector beams with local polarization-matched plasmonic metasurface.Opt Lett 2022; 47(24):6341-6344.
PDF(1800 KB)

Accesses

Citation

Detail

段落导航
相关文章

/