[1] |
Y. Wang, Q. Luo, T. Xiao, Y. Zhu, Y. Xiao. Impact of polymyxin resistance on virulence and fitness among clinically important gram-negative bacteria. Engineering, 13 (2022), pp. 178-185.
|
[2] |
X. Chen, J. Han, X. Cai, S. Wang. Antimicrobial peptides: sustainable application informed by evolutionary constraints. Biotechnol Adv, 60 (2022), Article 108012.
|
[3] |
A.W. Simonson, A.S. Mongia, M.R. Aronson, J.N. Alumasa, D.C. Chan, A. Lawanprasert, et al. Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nat Biomed Eng, 5 (5) (2021), pp. 467-480.
|
[4] |
J.L. Narayana, B. Mishra, T. Lushnikova, Q. Wu, Y.S. Chhonker, Y. Zhang, et al. Two distinct amphipathic peptide antibiotics with systemic efficacy. Proc Natl Acad Sci USA, 117 (32) (2020), pp. 19446-19454.
|
[5] |
C. Sun, W. Liu, L. Wang, R. Meng, J. Deng, R. Qing, et al. Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing. Mater Today Bio, 23 (2023), Article 100807.
|
[6] |
Y. Wang, Y. Yang, Y. Shi, H. Song, C. Yu. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater, 32 (18) (2020), Article 1904106.
|
[7] |
H. Wang, M. Wang, X. Xu, P. Gao, Z. Xu, Q. Zhang, et al. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat Commun, 12 (1) (2021), pp. 3331-3413.
|
[8] |
X. Yang, Q. Wei, H. Shao, X. Jiang. Multivalent aminosaccharide-based gold nanoparticles as narrow-spectrum antibiotics in vivo. ACS Appl Mater Interfaces, 11 (8) (2019), pp. 7725-7730.
|
[9] |
Y. Qiao, J. He, W. Chen, Y. Yu, W. Li, Z. Du, et al. Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells. ACS Nano, 14 (3) (2020), pp. 3299-3315.
|
[10] |
A. Frei, A.D. Verderosa, A.G. Elliott, J. Zuegg, M.A.T. Blaskovich. Metals to combat antimicrobial resistance. Nat Rev Chem, 7 (3) (2023), pp. 202-224.
|
[11] |
J. Portelinha, S.S. Duay, S.I. Yu, K. Heilemann, M.D.J. Libardo, S.A. Juliano, et al. Antimicrobial peptides and copper(II) ions: novel therapeutic opportunities. Chem Rev, 121 (4) (2021), pp. 2648-2712.
|
[12] |
B.K. Maiti, N. Govil, T. Kundu, J.J.G. Moura. Designed metal-ATCUN derivatives: redox- and non-redox-based applications relevant for chemistry, biology, and medicine. iScience, 23 (12) (2020), Article 101792.
|
[13] |
A.M. Pinkham, Z. Yu, J.A. Cowan. Attenuation of west nile virus NS2B/NS3 protease by amino terminal copper and nickel binding (ATCUN) peptides. J Med Chem, 61 (3) (2018), pp. 980-988.
|
[14] |
C.M. Agbale, J.K. Sarfo, I.K. Galyuon, S.A. Juliano, G.G.O. Silva, D.F. Buccini, et al. Antimicrobial and antibiofilm activities of helical antimicrobial peptide sequences incorporating metal-binding motifs. Biochemistry, 58 (36) (2019), pp. 3802-3812.
|
[15] |
Y. Zhou, S. Fan, L. Feng, X. Huang, X. Chen. Manipulating intratumoral fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv Mater, 33 (48) (2021), Article 2104223.
|
[16] |
B. Huang, Y. Liu, X. Huang, Z. Xie. Multiple heteroatom-doped few-layer carbons for the electrochemical oxygen reduction reaction. J Mater Chem A, 6 (44) (2018), pp. 22277-22286.
|
[17] |
L. Shi, L. Wang, J. Chen, J. Chen, L. Ren, X. Shi, et al. Modifying graphene oxide with short peptide via click chemistry for biomedical applications. Appl Mater Today, 5 (2016), pp. 111-117.
|
[18] |
X. Xie, T. Sun, J. Xue, Z. Miao, X. Yan, W. Fang, et al. Ag nanoparticles cluster with pH-triggered reassembly in targeting antimicrobial applications. Adv Funct Mater, 30 (17) (2020), Article 2000511.
|
[19] |
M. Song, Y. Liu, X. Huang, S. Ding, Y. Wang, J. Shen, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant gram-negative pathogens. Nat Microbiol, 5 (8) (2020), pp. 1040-1050.
|
[20] |
H.V. Ho, G. Tripathi, J. Gwon, S.Y. Lee, B.T. Lee. Novel TOCNF reinforced injectable alginate/β-tricalcium phosphate microspheres for bone regeneration. Mater Des, 194 (2020), Article 108892.
|
[21] |
K. Fang, Y. Shen, K.H.R. Yie, Z. Zhou, L. Cai, S. Wu, et al. Preparation of zirconium hydrogen phosphate coatings on sandblasted/acid-etched titanium for enhancing its osteoinductivity and friction/corrosion resistance. IJN, 16 (2021), pp. 8265-8277.
|
[22] |
Y. Yang, X. Wu, L. Ma, C. He, S. Cao, Y. Long, et al. Bioinspired spiky peroxidase-mimics for localized bacterial capture and synergistic catalytic sterilization. Adv Mater, 33 (8) (2021), Article 2005477.
|
[23] |
X. Wang, C. Zhang, L. He, M. Li, P. Chen, W. Yang, et al. Near infrared II excitation nanoplatform for photothermal/chemodynamic/antibiotic synergistic therapy combating bacterial biofilm infections. J Nanobiotechnology, 21 (1) (2023), pp. 446-1413.
|
[24] |
C. Xiao, L. Zhou, J. Gao, R. Jia, Y. Zheng, S. Zhao, et al. Musculus senhousei as a promising source of bioactive peptides protecting against alcohol-induced liver injury. Food Chem Toxicol, 174 (2023), Article 113652.
|
[25] |
L. Tan, Z. Zhou, X. Liu, J. Li, Y. Zheng, Z. Cui, et al. Overcoming multidrug-resistant MRSA using conventional aminoglycoside antibiotics. Adv Sci, 7 (9) (2020), Article 1902070.
|
[26] |
F. Bezrukov, J. Prados, A. Renzoni, O.O. Panasenko. MazF toxin causes alterations in Staphylococcus aureus transcriptome, translatome and proteome that underlie bacterial dormancy. Nucleic Acids Res, 49 (4) (2021), pp. 2085-2101.
|
[27] |
B. Xu, H. Wang, W. Wang, L. Gao, S. Li, X. Pan, et al. A single-atom nanozyme for wound disinfection applications. Angew Chem Int Ed, 58 (15) (2019), pp. 4911-4916.
|
[28] |
H. Chen, J. Cheng, X. Cai, J. Han, X. Chen, L. You, et al. pH-switchable antimicrobial supramolecular hydrogels for synergistically eliminating biofilm and promoting wound healing. ACS Appl Mater Interfaces, 14 (16) (2022), pp. 18120-18132.
|
[29] |
W. Feng, G. Li, X. Kang, R. Wang, F. Liu, D. Zhao, et al. Cascade-targeting poly(amino acid) nanoparticles eliminate intracellular bacteria via on-site antibiotic delivery. Adv Mater, 34 (12) (2022), Article 2109789.
|
[30] |
X. Arqué, M.D.T. Torres, T. Patiño, A. Boaro, S. Sánchez, C. de la Fuente-Nunez. Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors. ACS Nano, 16 (5) (2022), pp. 7547-7558.
|
[31] |
X. Chen, X. Wu, S. Wang. An optimized antimicrobial peptide analog acts as an antibiotic adjuvant to reverse methicillin-resistant Staphylococcus aureus. NPJ Sci Food, 6 (1) (2022), p. 57.
|
[32] |
Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem Rev, 119 (3) (2019), pp. 1806-1854.
|
[33] |
B. Wang, C. Cheng, M. Jin, J. He, H. Zhang, W. Ren, et al. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew Chem Int Ed, 61 (33) (2022), Article e202207268.
|
[34] |
H. Zhuo, X. Zhang, J. Liang, Q. Yu, H. Xiao, J. Li. Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem Rev, 120 (21) (2020), pp. 12315-12341.
|
[35] |
H. Fei, J. Dong, C. Wan, Z. Zhao, X. Xu, Z. Lin, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater, 30 (35) (2018), Article 1802146.
|
[36] |
Z. Liu, H. Li, X. Gao, X. Guo, S. Wang, Y. Fang, et al. Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nat Commun, 13 (1) (2022), p. 4716.
|
[37] |
X. Zhang, X. Lin, X. Huang, Y. Chen, S. Lin, X. Huang, et al. Identification of role of nitrogen dopants in nanocarbon catalysis. Carbon Future, 1 (2) (2024), Article 9200008.
|
[38] |
B. Lu, G. Zhu, C. Yu, G. Chen, C. Zhang, X. Zeng, et al. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Res, 14 (1) (2021), pp. 185-190.
|
[39] |
Y. Di, Q. Lin, C. Chen, R.C. Montelaro, Y. Doi, B. Deslouches. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci Adv, 6 (18) (2020), Article eaay6817.
|
[40] |
M. Azizi-Lalabadi, H. Hashemi, J. Feng, S.M. Jafari. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci, 284 (2020), Article 102250.
|
[41] |
X. Jin, F. Gao, M. Qin, Y. Yu, Y. Zhao, T. Shao, et al. How to make personal protective equipment spontaneously and continuously antimicrobial (incorporating oxidase-like catalysts). ACS Nano, 16 (5) (2022), pp. 7755-7771.
|
[42] |
X. Wang, Q. Shi, Z. Zha, D. Zhu, L. Zheng, L. Shi, et al. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact Mater, 6 (12) (2021), pp. 4389-4401.
|
[43] |
W. Xu, B. Sun, F. Wu, M. Mohammadniaei, Q. Song, X. Han, et al. Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy. Chem Eng J, 438 (2022), Article 135636.
|
[44] |
P. Tan, C. Wu, Q. Tang, T. Wang, C. Zhou, Y. Ding, et al. pH-triggered size-transformable and bioactivity-switchable self-assembling chimeric peptide nanoassemblies for combating drug-resistant bacteria and biofilms. Adv Mater, 35 (29) (2023), Article 2210766.
|
[45] |
X. Lu, S. Gao, H. Lin, L. Yu, Y. Han, P. Zhu, et al. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy. Adv Mater, 32 (36) (2020), Article 2002246.
|
[46] |
T. Song, M. Lv, L. Zhang, X. Zhang, G. Song, M. Huang, et al. The protective effects of tripeptides VPP and IPP against small extracellular vesicles from angiotensin II-induced vascular smooth muscle cells mediating endothelial dysfunction in human umbilical vein endothelial cells. J Agric Food Chem, 68 (47) (2020), pp. 13730-13741.
|
[47] |
J. Cheng, X. Lv, Y. Pan, D. Sun. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci Technol, 103 (2020), pp. 239-247.
|
[48] |
S. Mascharak, H.E. Talbott, M. Januszyk, M. Griffin, K. Chen, M.F. Davitt, et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell, 29 (2) (2022), pp. 315-327.e6.
|
[49] |
S. Xu, A.D. Chisholm. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev Cell, 31 (1) (2014), pp. 48-60.
|
[50] |
M.A. Fernandez-Yague, L.A. Hymel, C.E. Olingy, C. McClain, M.E. Ogle, J.R. García, et al. Analyzing immune response to engineered hydrogels by hierarchical clustering of inflammatory cell subsets. Sci Adv, 8 (8) (2022), Article eabd8056.
|
[51] |
X. Xie, R. Wang, X. Zhang, Y. Ren, T. Du, Y. Ni, et al. A photothermal and self-induced Fenton dual-modal antibacterial platform for synergistic enhanced bacterial elimination. Appl Catal B, 295 (2021), Article 120315.
|