微装配技术综述——基本原理、应用及最新进展

Yujian Ana, Bingze Hea, Zhuochen Mab, Yao Guoa,*(), Guang-Zhong Yanga,*()

工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 323-346.

PDF(5683 KB)
PDF(5683 KB)
工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 323-346. DOI: 10.1016/j.eng.2024.09.024
Review

 微装配技术综述——基本原理、应用及最新进展

  • Yujian Ana, Bingze Hea, Zhuochen Mab, Yao Guoa,*(), Guang-Zhong Yanga,*()
作者信息 +

Microassembly: A Review on Fundamentals, Applications and Recent Developments

  • Yujian Ana, Bingze Hea, Zhuochen Mab, Yao Guoa,*(), Guang-Zhong Yanga,*()
Author information +
History +

摘要

 

Abstract

Microassembly platforms have attracted significant attention recently because of their potential for developing microsystems and devices for a wide range of applications. Despite their considerable potential, existing techniques are mainly used in laboratory research settings. This review provides an overview of the fundamentals, techniques, and applications of microassemblies. Manipulation techniques based on magnetic, optical, and acoustic fields and mechanical systems are discussed, and control systems that rely on machine vision and force feedback are introduced. Additionally, recent applications of microassemblies in microstructure fabrication, microelectromechanical operation, and biomedical engineering are examined. This review also highlights unmet technical demands and emerging trends, as well as new research opportunities in this expanding field of research driven by allied technologies such as micro-robotics.

关键词

  /

Keywords

Microassembly / Microrobotics / Micro/nano-systems / Microelectromechanical systems / Manipulation and control

引用本文

导出引用
Yujian An, Bingze He, Zhuochen Ma, Yao Guo, Guang-Zhong Yang.  微装配技术综述——基本原理、应用及最新进展. Engineering. 2025, 48(5): 323-346 https://doi.org/10.1016/j.eng.2024.09.024

参考文献

[1]
E.I. Rivin Mechanical design of robots. McGraw-Hill, New York (1987)
[2]
Zesch W, Brunner M, Weber A. Vacuum tool for handling microobjects with a nanorobot. In:Proceedings of the International Conference on Robotics and Automation; 1997 Apr 25-25; Albuquerque, NM, USA. Piscataway; IEEE; 2002. p. 1761-6.
[3]
M. Sitti Microscale and nanoscale robotics systems. IEEE Robot Autom Mag, 14 (1) (2007), pp. 53-60
[4]
F. Arai, D. Ando, T. Fukuda, Y. Nonoda, T. Oota Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement. In:Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (2002), pp. 236-241
[5]
Fearing RS. Survey of sticking effects for micro parts handling. In:Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots; 1995 Aug 5-9; Pittsburgh, PA, USA. Piscataway; IEEE; 2002. p. 212-7.
[6]
A. Menciassi, A. Eisinberg, I. Izzo, P. Dario From“ macro” to“ micro” manipulation: models and experiments. IEEE/ASME Trans Mechatron, 9 (2) (2004), pp. 311-320
[7]
Y. Yu, C. Jiang, X.T. Zheng, Y. Liu, W.P. Goh, R.H.H. Lim, et al. Three-dimensional highway-like graphite flakes/carbon fiber hybrid electrode for electrochemical biosensor. Mater Today Adv, 14 (2022), Article 100238
[8]
T. Li, S. Yu, B. Sun, Y. Li, X. Wang, Y. Pan, et al. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Sci Adv, 9(18):eadg4501 (2023)
[9]
W. Zhang, Y. Deng, J. Zhao, T. Zhang, X. Zhang, W. Song, et al. Amoeba-inspired magnetic venom microrobots. Small, 19 (23) (2023), p. 2207360
[10]
J. Yu, B. Wang, X. Du, Q. Wang, L. Zhang. Ultra-extensible ribbon-like magnetic microswarm. Nat Commun, 9 (1) (2018), p. 3260
[11]
W. Shi, J. Huang, R. Fang, M. Liu Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response. ACS Appl Mater Interfaces, 12 (5) (2020), pp. 5177-5194
[12]
J. Yu, D. Jin, K.F. Chan, Q. Wang, K. Yuan, L. Zhang Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun, 10 (1) (2019), p. 5631
[13]
L. Tan, B. Liu, U. Glebe, A. Böker Magnetic field-induced assembly of superparamagnetic cobalt nanoparticles on substrates and at liquid-air interface. Langmuir, 34 (46) (2018), pp. 13993-14002
[14]
T. Wen, W. Zhu, C. Xue, J. Wu, Q. Han, X. Wang, et al. Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron, 56 (2014), pp. 180-185
[15]
J. Liu, T. Zhou, T. Han, L. Zhu, Y. Wang, Y. Hu, et al. Engineering a ternary one-dimensional Fe2P@SnP 0.94@MoS 2 mesostructure through magnetic-field-induced self-assembly as a high-performance lithium-ion battery anode. Chem Commun, 58 (33) (2022), pp. 5108-5111
[16]
M. Park, S. Kang, C. Nam, K. Narasimha, W.B. Lee, S.J. Park Magnetic field-induced self-assembly of conjugated block copolymers and nanoparticles at the air-water interface. ACS Appl Mater Interfaces, 14 (6) (2022), pp. 8266-8273
[17]
J. Mohapatra, J. Elkins, M. Xing, D. Guragain, S.R. Mishra, J.P. Liu Magnetic-field-induced self-assembly of FeCo/CoFe2O4 core/shell nanoparticles with tunable collective magnetic properties. Nanoscale, 13 (8) (2021), pp. 4519-4529
[18]
K.J. Jeong, D.K. Lee, V.T. Tran, C. Wang, J. Lv, J. Park, et al. Helical magnetic field-induced real-time plasmonic chirality modulation. ACS Nano, 14 (6) (2020), pp. 7152-7160
[19]
Khalil IS, van den Brink F, Sukas OS, Misra S. Microassembly using a cluster of paramagnetic microparticles. In:Proceedings of the 2013 IEEE Inter- national Conference on Robotics and Automation; 2013 May 6-10; Karlsruhe, Germany. Piscataway; IEEE; 2013. p. 5527-32.
[20]
L. Xia, R. Liu, J. Liu, X. Zhu, A. Ding, Q. Cao Radial magnetic levitation and its application to density measurement, separation, and detection of microplastics. Anal Chem, 95 (22) (2023), pp. 8660-8667
[21]
X. Dong, M. Sitti Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. Int J Robot Res, 39 (5) (2020), pp. 617-638
[22]
X. Hu, I.C. Yasa, Z. Ren, S.R. Goudu, H. Ceylan, W. Hu, et al. Magnetic soft micromachines made of linked microactuator networks. Sci Adv, 7(23):eabe8436 (2021)
[23]
M. Jílek, M. Somr, M. Kulich, J. Zeman, L. Přeučil. Towards a passive self-assembling macroscale multi-robot system. IEEE Robot Autom Lett, 6 (4) (2021), pp. 7293-7300
[24]
H. Gu, Q. Boehler, D. Ahmed, B.J. Nelson Magnetic quadrupole assemblies with arbitrary shapes and magnetizations. Sci Robot, 4(35):eaax8977 (2019)
[25]
X. Yang, R. Tan, H. Lu, T. Fukuda, Y. Shen Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously. Nat Commun, 13 (1) (2022), p. 4156
[26]
S. Tasoglu, C. Yu, H.I. Gungordu, S. Guven, T. Vural, U. Demirci Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat Commun, 5 (1) (2014), p. 4702
[27]
R. Khalesi, M. Yousefi, H.N. Pishkenari, G. Vossoughi Robust independent and simultaneous position control of multiple magnetic microrobots by sliding mode controller. Mechatronics, 84 (2022), Article 102776
[28]
H. Lee, D. Lee, S. Jeon A two-dimensional manipulation method for a magnetic microrobot with a large region of interest using a triad of electromagnetic coils. Micromachines, 13 (3) (2022), p. 416
[29]
C.C. Mayorga-Martinez, J. Vyskoil, F. Novotny, P. Bednar, D. Ruzek, O. Alduhaish, et al. Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Appl Mater Today, 26 (2022), Article 101337
[30]
M. Pacheco, C.C. Mayorga-Martinez, A. Escarpa, M. Pumera Micellar polymer magnetic microrobots as efficient nerve agent microcleaners. ACS Appl Mater Interfaces, 14 (22) (2022), pp. 26128-26134
[31]
F. Zhao, W. Rong, D. Li, L. Wang, L. Sun Four-dimensional design and programming of shape-memory magnetic helical micromachines. Appl Mater Today, 27 (2022), Article 101422
[32]
A. Barbot, H. Tan, M. Power, F. Seichepine, G.Z. Yang Floating magnetic microrobots for fiber functionalization. Sci Robot, 4(34):eaax8336 (2019)
[33]
Y. Alapan, B. Yigit, O. Beker, A.F. Demirörs, M. Sitti Shape-encoded dynamic assembly of mobile micromachines. Nat Mater, 18 (11) (2019), pp. 1244-1251
[34]
S. Tasoglu, E. Diller, S. Guven, M. Sitti, U. Demirci Untethered micro-robotic coding of three-dimensional material composition. Nat Commun, 5 (1) (2014), p. 3124
[35]
B.V. Johnson, S. Chowdhury, D.J. Cappelleri Local magnetic field design and characterization for independent closed-loop control of multiple mobile microrobots. IEEE/ASME Trans Mechatron, 25 (2) (2020), pp. 526-534
[36]
X. Yang, R. Tan, H. Lu, Y. Shen Magnetic-directed manipulation and assembly of fragile bioartificial architectures in the liquid-liquid interface. IEEE/ASME Trans Mechatron, 27 (5) (2022), pp. 3590-3600
[37]
Hsu A, Cowan C, Chu W, McCoy B, Wong-Foy A, Pelrine R, et al. Automated 2D micro-assembly using diamagnetically levitated milli-robots. In: Proceedings of the 2017 inter- national conference on manipulation, automation and robotics at small scales (MARSS); 2017 Jul 17-21; Montreal, QC, Canada. Piscataway; IEEE; 2017. p. 1-6.
[38]
T. Yao, N.G. Chisholm, E.B. Steager, K.J. Stebe Directed assembly and micro-manipulation of passive particles at fluid interfaces via capillarity using a magnetic micro-robot. Appl Phys Lett, 116 (4) (2020), Article 043702
[39]
Z. Ji, C. Yan, B. Yu, X. Wang, F. Zhou Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Adv Mater Interfaces, 4 (22) (2017), p. 1700629
[40]
C.R. Dunn, B.P. Lee, R.M. Rajachar Thermomagnetic-responsive self-folding microgrippers for improving minimally invasive surgical techniques and biopsies. Molecules, 27 (16) (2022), p. 5196
[41]
A. Ghosh, Y. Liu, D. Artemov, D.H. Gracias Magnetic resonance guided navigation of untethered microgrippers. Adv Healthc Mater, 10 (4) (2021), p. 2000869
[42]
K. Han, C.W. Shields IV, N.M. Diwakar, B. Bharti, G.P. L’opez, O.D. Velev Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. Sci Adv, 3 (8) (2017), p. e1701108
[43]
Kararsiz G, Rogowski LW, Zhang X, Bhattacharjee A, Kim MJ. Adaptive tracking controller for an alginate artificial cell. In:Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2021 Sep 27-Oct 1; Prague, Czech Republic. Piscataway; IEEE; 2021. p. 7483-9.
[44]
L. Xu, D. Gong, N. Celi, J. Xu, D. Zhang, J. Cai Biohybrid magnetic microrobots for enhanced photocatalytic rhb degradation and E. coli inactivation under visible light irradiation. Appl Surf Sci, 579 (2022), Article 152165
[45]
Feng Y, Feng L, Dai Y, Bai X, Zhang C, Chen Y, et al. A novel and controllable cell-based microrobot in real vascular network for target tumor therapy. In:Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020 Oct 24-2021 Jan 14; Las Vegas, NV, USA. Piscataway; IEEE; 2021. p. 2828-33.
[46]
D. Gong, N. Celi, D. Zhang, J. Cai Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl Mater Interfaces, 14 (5) (2022), pp. 6320-6330
[47]
D.P. Singh, U. Choudhury, P. Fischer, A.G. Mark Non-equilibrium assembly of light-activated colloidal mixtures. Adv Mater, 29 (32) (2017), p. 1701328
[48]
J.E. Melzer, E. McLeod Assembly of multicomponent structures from hundreds of micron-scale building blocks using optical tweezers. Microsyst Nanoeng, 7 (1) (2021), p. 45
[49]
Maruo S, Ikuta K, Hayato K. Light-driven mems made by high-speed two-photon microstereolithography. In:Proceedings of the Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090); 2001 Jun 25- 25; Interlaken, Switzerland. Piscataway; IEEE; 2002. p. 594-7.
[50]
V. de la Asunción-Nadal, D. Rojas, Jurado-Sa’nchez B, Escarpa A. Transition metal dichalcogenide micromotors with programmable photophoretic swarming motion. J Mater Chem A, 11 (3) (2023), pp. 1239-1245
[51]
P. Mena-Giraldo, M. Kaur, S.L. Maurizio, G.A. Mandl, J.A. Capobianco Janus micromotors for photophoretic motion and photon upconversion applications using a single near-infrared wavelength. ACS Appl Mater Interfaces, 16 (3) (2024), pp. 4249-4260
[52]
X. Liang, F. Mou, Z. Huang, J. Zhang, M. You, L. Xu, et al. Hierarchical microswarms with leader-follower-like structures: electrohydrodynamic self-organization and multimode collective photoresponses. Adv Funct Mater, 30 (16) (2020), p. 1908602
[53]
F. Mou, J. Zhang, Z. Wu, S. Du, Z. Zhang, L. Xu, et al. Phototactic flocking of photochemical micromotors. iScience, 19 (2019), pp. 415-424
[54]
S. Che, J. Zhang, F. Mou, X. Guo, J.E. Kauffman, A. Sen, et al. Light-programmable assemblies of isotropic micromotors. Research, 2022 ( 2022), p. 9816562
[55]
Tong J, Wang D, Liu Y, Luo X, Jiang J, Dong B, et al. Bioinspired micro/nanomotor with visible light energy-dependent forward, reverse, reciprocating, and spinning schooling motion. Proc Natl Acad Sci USA 2021 ;118(42):e2104481118.
[56]
J.D. Kim, S.U. Hwang, Y.G. Lee Traceable assembly of microparts using optical tweezers. J Micromech Microeng, 22 (10) (2012), Article 105003
[57]
J.M. Tam, I. Biran, D.R. Walt An imaging fiber-based optical tweezer array for microparticle array assembly. Appl Phys Lett, 84 (21) (2004), pp. 4289-4291
[58]
J.D. Kim, Y.G. Lee Construction and actuation of a microscopic gear assembly formed using optical tweezers. J Micromech Microeng, 23 (6) (2013), Article 065010
[59]
K. Castelino, S. Satyanarayana, M. Sitti Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly. Robotica, 23 (4) (2005), pp. 435-439
[60]
S. Ghosh, S. Das, S. Paul, P. Thomas, B. Roy, P. Mitra, et al. In situ self-assembly and photopolymerization for hetero-phase synthesis and patterning of conducting materials using soft oxometalates in thermo-optical tweezers. J Mater Chem C, 5 (27) (2017), pp. 6718-6728
[61]
H. Tang, T. Kishi, T. Yano In situ assembling of glass microspheres and bonding force analysis by the ultraviolet-near-infrared dual-beam optical tweezer system. ACS Omega, 6 (18) (2021), pp. 11869-11877
[62]
R.E. Holmlin, M. Schiavoni, C.Y. Chen, S.P. Smith, M.G. Prentiss, G.M. Whitesides Light-driven microfabrication: assembly of multicomponent, three-dimensional structures by using optical tweezers. Angew Chem Int Ed, 39 (19) (2000), pp. 3503-3506
[63]
G.R. Kirkham, E. Britchford, T. Upton, J. Ware, G.M. Gibson, Y. Devaud, et al. Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci Rep, 5 (2015), p. 8577
[64]
X. Wang, X. Gou, S. Chen, X. Yan, D. Sun Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition. J Micromech Microeng, 23 (7) (2013), Article 075006
[65]
U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, et al. Live cell lithography: using optical tweezers to create synthetic tissue. Lab Chip, 8 (12) (2008), pp. 2174-2181
[66]
S. Pradhan, C.P. Whitby, M.A. Williams, J.L.Y. Chen, E. Avci Interfacial colloidal assembly guided by optical tweezers and tuned via surface charge. J Colloid Interface Sci, 621 (2022), pp. 101-109
[67]
X. Zou, Q. Zheng, D. Wu, H. Lei Controllable cellular micromotors based on optical tweezers. Adv Funct Mater, 30 (27) (2020), p. 2002081
[68]
M. Tanaka, I. Kuramichi, Y. Tsuboi, K. Yuyama Confinement and aggregation of colloidal particles in an ionic liquid microdroplet formed by optical tweezers. Jpn J Appl Phys, 61 (10) (2022), Article 100901
[69]
X. Shan, F. Wang, D. Wang, S. Wen, C. Chen, X. Di, et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat Nanotechnol, 16 (5) (2021), pp. 531-537
[70]
K. Melde, E. Choi, Z. Wu, S. Palagi, T. Qiu, P. Fischer Acoustic fabrication via the assembly and fusion of particles. Adv Mater, 30 (3) (2018), p. 1704507
[71]
K. Melde, H. Kremer, M. Shi, S. Seneca, C. Frey, I. Platzman, et al. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. Sci Adv, 9(6):eadf6182 (2023)
[72]
Z. Ma, A.W. Holle, K. Melde, T. Qiu, K. Poeppel, V.M. Kadiri, et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv Mater, 32 (4) (2020), p. 1904181
[73]
Y. Sun, Y. Luo, T. Xu, G. Cheng, H. Cai, X. Zhang Acoustic aggregation-induced separation for enhanced fluorescence detection of alzheimer’s biomarker. Talanta, 233 (2021), Article 122517
[74]
T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, et al. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J Am Chem Soc, 137 (6) (2015), pp. 2163-2166
[75]
Y. Huang, T. Xu, Y. Luo, C. Liu, X. Gao, Z. Cheng, et al. Ultra-trace protein detection by integrating lateral flow biosensor with ultrasound enrichment. Anal Chem, 93 (5) (2021), pp. 2996-3001
[76]
T. Tang, L. Huang Mie particle assembly by a converging ultrasound field and acoustic interaction forces. Appl Acoust, 180 (2021), Article 108123
[77]
J. Greenhall, F. Guevara Vasquez, B. Raeymaekers Ultrasound directed self-assembly of user-specified patterns of nanoparticles dispersed in a fluid medium. Appl Phys Lett, 108 (10) (2016), Article 103103
[78]
M. Prisbrey, J. Greenhall, F. Guevara Vasquez, B. Raeymaekers Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium. J Appl Phys, 121 (1) (2017), Article 014302
[79]
M. Prisbrey, F. Guevara Vasquez, B. Raeymaekers Arranging ellipsoidal particles in three-dimensional user-specified orientations with ultrasound-directed self-assembly. Phys Rev Appl, 14 (2) (2020), Article 024026
[80]
M. Prisbrey, B. Raeymaekers Aligning high-aspect-ratio particles in user-specified orientations with ultrasound-directed self-assembly. Phys Rev Appl, 12 (1) (2019), Article 014014
[81]
M. Prisbrey, F. Guevara Vasquez, B. Raeymaekers 3D ultrasound directed self-assembly of high aspect ratio particles: on the relationship between the number of transducers and their spatial arrangement. Appl Phys Lett, 117 (11) (2020), Article 111904
[82]
L. Feng, B. Song, Y. Chen, S. Liang, Y. Dai, Q. Zhou, et al. On-chip rotational manipulation of microbeads and oocytes using acoustic microstreaming generated by oscillating asymmetrical microstructures. Biomicrofluidics, 13 (6) (2019), Article 064103
[83]
P. Wadsworth, I. Nelson, D.L. Porter, B. Raeymaekers, S.E. Naleway Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing. Mater Des, 185 (2020), Article 108243
[84]
J. Greenhall, B. Raeymaekers 3D printing macroscale engineered ma- terials using ultrasound directed self-assembly and stereolithography. Adv Mater Technol, 2 (9) (2017), p. 1700122
[85]
K. Niendorf, B. Raeymaekers Combining ultrasound directed self-assembly and stereolithography to fabricate engineered polymer matrix composite materials with anisotropic electrical conductivity. Compos Part B, 223 (2021), Article 109096
[86]
K. Niendorf, B. Raeymaekers Quantifying macro- and microscale alignment of carbon microfibers in polymer-matrix composite materials fabricated using ultrasound directed self-assembly and 3D-printing. Compos Part A, 129 (2020), Article 105713
[87]
Y. Wei, X.L. Lu, H. Shen, H.M. Peng, Z.Y. Yuan, X.S. Guo, et al. An acousto-microrobotic interface with vision-feedback control. Adv Mater Technol, 12 (6) (2021), p. 2100470
[88]
X. Lu, K. Zhao, W. Liu, D. Yang, H. Shen, H. Peng, et al. A human microrobot interface based on acoustic manipulation. ACS Nano, 13 (10) (2019), pp. 11443-11452
[89]
M. Schrage, M. Medany, D. Ahmed. Ultrasound microrobots with reinforcement learning. Adv Mater Technol, 8 (10) (2023), p. 2201702
[90]
Reinhart G, Heinz M, Stock J, Zimmermann J, Schilp M, Zitzmann A, et al. Non-contact handling and transportation for substrates and microassembly using ultrasound-air-film-technology. In: Proceedings of the 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference; 2011 May 16-18; Saratoga Springs, NY, USA. Piscataway; IEEE; 2011. p. 1-6.
[91]
S. Mohanty, R.J. Fidder, P.M. Matos, C.M. Heunis, M. Kaya, N. Blanken, et al. SonoTweezer: an acoustically powered end-effector for underwater micromanipulation. IEEE Trans Ultrason Ferroelectr Freq Control, 69 (3) (2022), pp. 988-997
[92]
J. Durrer, P. Agrawal, A. Ozgul, S.C.F. Neuhauss, N. Nama, D. Ahmed. A robot-assisted acoustofluidic end effector. Nat Commun, 13 (1) (2022), p. 6370
[93]
Y. Yang, T. Ma, Q. Zhang, J. Huang, Q. Hu, Y. Li, et al. 3D acoustic manipulation of living cells and organisms based on 2D array. IEEE Trans Biomed Eng, 69 (7) (2022), pp. 2342-2352
[94]
T. Luo, M. Wu. Biologically inspired micro-robotic swimmers remotely controlled by ultrasound waves. Lab Chip, 21 (21) (2021), pp. 4095-4103
[95]
Ichikawa A, Sakuma S, Arai F, Akagi S. Untethered micro-robot with gripping mechanism for on-chip cell surgery utilizing outer magnetic force. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA); 2014 May 31-Jun7; Hong Kong, China. Piscataway; IEEE; 2014. p. 3795-800.
[96]
Z. Lyu, Q. Xu, L. Zhu Design and development of a new piezoelectric-actuated biaxial compliant microgripper with long strokes. IEEE Trans Autom Sci Eng, 20 (1) (2023), pp. 206-217
[97]
M. Probst, C. Hürzeler, R. Borer, B.J. Nelson A microassembly system for the flexible assembly of hybrid robotic mems devices. Int J Optomechatronics, 3 (2) (2009), pp. 69-90
[98]
T.K. Das, B. Shirinzadeh, A. Al-Jodah, M. Ghafarian, J. Pinskier Computational parametric analysis and experimental investigations of a compact flexure-based microgripper. Precis Eng, 66 (2020), pp. 363-373
[99]
T.K. Das, B. Shirinzadeh, M. Ghafarian, A. Al-Jodah, Y. Zhong, J. Smith Design, analysis and experimental investigations of a high precision flexure-based microgripper for micro/nano manipulation. Mechatronics, 69 (2020), Article 102396
[100]
C. Shi, X. Dong, Z. Yang A microgripper with a large magnification ratio and high structural stiffness based on a flexure-enabled mechanism. IEEE/ASME Trans Mechatron, 26 (6) (2021), pp. 3076-3086
[101]
G. Si, L. Sun, Z. Zhang, X. Zhang Theoretical thermal-mechanical modelling and experimental validation of a three-dimensional (3D) electrothermal microgripper with three fingers. Micromachines, 12 (12) (2021), p. 1512
[102]
G. Si, M. Ding, Z. Zhang, X. Zhang Theoretical thermal-mechanical modelling and experimental validation of a novel 3D three-fingered electrothermal microgripper. Precis Eng, 77 (2022), pp. 205-219
[103]
Ramya S, Kumar SP, Aravind T, Srinivasan T, Ram GD, Lingaraja D. Thermal inplane microgripper for handling micro-objects. In:Proceedings of the 2022 7th International Conference on Communication and Electronics Systems (ICCES); 2022 Jun 22- 24; Coimbatore, India. Piscataway; IEEE; 2022. p. 210-4.
[104]
B.K. Chen, Y. Zhang, Y. Sun Active release of microobjects using a mems microgripper to overcome adhesion forces. J Microelectromech Syst, 18 (3) (2009), pp. 652-659
[105]
Beyeler F, Bell DJ, Nelson BJ, Sun Y, Neild A, Oberti S, et al. Design of a micro-gripper and an ultrasonic manipulator for handling micron sized objects. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006 Oct 9- 15; Beijing, China. Piscataway; IEEE; 2007. p. 772-7.
[106]
Ma Y, Du K, Zhou D, Zhang J, Liu X, Xu D. Automatic precision robot assembly system with microscopic vision and force sensor. Int J Adv Robot Syst 2019 ;16(3):1729881419851619.
[107]
Komati B, Kudryavtsev A, Clévy C, Laurent G, Tamadazte B, Agnus J, et al. Automated robotic microassembly of flexible optical components. In:Proceedings of the 2016 IEEE International Symposium on Assembly and Manufacturing (ISAM); 2016 Aug 21-22; Fort Worth, TX, USA. Piscataway; IEEE; 2016. p. 93-8.
[108]
G. Fantoni, O. Jorg, V. Tincani Indirect force measurement system in a mechanical microgripper. Precis Eng, 78 (2022), pp. 206-214
[109]
T. Aravind, S. Praveen Kumar, G. Dinesh Ram, D. Lingaraja Analysis of material profile for polymer-based mechanical microgripper for thin plate holding. E. Priya, V. Rajinikanth (Eds.), Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, Springer, Cham (2020), pp. 103-117
[110]
G. De. Pasquale Design and modeling of MEMS microgrippers for laser-based additive manufacturing. Micro, 2 (2) (2022), pp. 225-239
[111]
H. McClintock, F.Z. Temel, N. Doshi, J. Koh, R.J. Wood The millidelta: a high-bandwidth, high-precision, millimeter-scale delta robot. Sci Robot, 3(14):eaar3018 (2018)
[112]
M. Leveziel, W. Haouas, G.J. Laurent, M. Gauthier, R. Dahmouche Migribot: a miniature parallel robot with integrated gripping for high-throughput micromanipulation. Sci Robot, 7(69):eabn4292 (2022)
[113]
D. Zhang, J. Chen, W. Li, D. Bautista Salinas, G.Z. Yang A microsurgical robot research platform for robot-assisted microsurgery research and training. Int J CARS, 15 (2020), pp. 15-25
[114]
Sariola V, Zhou Q, Koivo HN. Three dimensional hybrid microassembly combining robotic microhandling and self-assembly. In:Proceedings of the 2009 IEEE International Conference on Robotics and Automation; 2009 May 12- 17; Kobe, Japan. Piscataway; IEEE; 2009. p. 2605-10.
[115]
V. Sariola, M. Jääskeläinen Q. Zhou Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans Robot, 26 (6) (2010), pp. 965-977
[116]
Z. Ge, L. Dai, J. Zhao, H. Yu, W. Yang, X. Liao, et al. Bubble-based microrobots enable digital assembly of heterogeneous microtissue modules. Biofabrication, 14 (2) (2022), Article 025023
[117]
W. Yin, Y. Wang, H. Liu, M. Sun, Y. Zhang, H. Yuan, et al. SCbots: stomatocyte-like colloidosomes as versatile microrobots fabricated by one-step self-assembly. Chem Eng J, 490 (2024), Article 151952
[118]
L. Kang, J. Zhao, H. Zhu, L. Zhu, G. Li, L. Wang, et al. Bubble jet propulsion of a “flying shuttle” zinc phosphate micro robot driven by enzyme-catalyzed reaction. Inorg Chem Commun, 157 (2023), Article 111242
[119]
S. Kim, Y. Jiang, K.L. Thompson Towell, M.S. Boutilier, N. Nayakanti, C. Cao, et al. Soft nanocomposite electroadhesives for digital micro- and nanotransfer printing. Sci Adv, 5(10):eaax4790 (2019)
[120]
M.S.H. Boutilier, C. Cao, N. Nayakanti, S. Kim, S.M. Taheri-Mousavi, A.J. Hart Limiting mechanisms and scaling of electrostatically controlled adhesion of soft nanocomposite surfaces for robotic gripping. ACS Appl Mater Interfaces, 13 (1) (2021), pp. 1192-1203
[121]
D. Wei, Q. Xiong, J. Dong, H. Wang, X. Liang, S. Tang, et al. Electrostatic adhesion clutch with superhigh force density achieved by mxene-poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) composites. Soft Robot, 10 (3) (2023), pp. 482-492
[122]
J. Zhang, X. Dai, W. Wu, K. Du Micro-vision based high-precision space assembly approach for trans-scale micro-device: the CFTA example. Sensors, 23 (1) (2023), p. 450
[123]
D.H. Wang, K. Wang, L.S. Qiang Depth estimation method of surface of micropart in microassembly space based on microscopic vision tomographic scanning images. J Microsc, 283 (2) (2021), pp. 77-92
[124]
Xie T, Zhang X, Li H, Zhang J. Hybrid feature based 6D pose tracking under binocular vision for automated micro-assembly. In:Proceedings of the 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE); 2023 Feb 10- 12; Shenzhen, China. Piscataway; IEEE; 2023. p. 112-7.
[125]
D. Wei, M.B. Hall, A. Sherehiy, D.O. Popa Design and evaluation of human-machine interface for nexus: a custom microassembly system. J Micro Nano-Manuf, 8 (4) (2020), Article 041011
[126]
Z. Zhang, X. Wang, H. Zhao, T. Ren, Z. Xu, Y. Luo The machine vision measurement module of the modularized flexible precision assembly station for assembly of micro- and meso-sized parts. Micromachines, 11 (10) (2020), p. 918
[127]
Bolya D, Zhou C, Xiao F, Lee YJ. YOLACT: real-time instance segmentation. In:Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV); 2019 Oct 27-Nov 2; Seoul, Republic of Korean. Piscataway; IEEE; 2020. p. 9156-65.
[128]
J. Cheng, W. Wu, Y. Yang, J. Zhang Yolact in micro-assembly robot system, Association for Computing Machinery, Sanya, China. New York (2022), pp. 1-5
[129]
F. Li, D. Gao, Y. Yang, J. Zhu Small target deep convolution recognition algorithm based on improved YOLOv4. Int J Mach Learn Cybern, 14 (2) (2023), pp. 387-394
[130]
A. Khachikyan, G. Pippione, M.I. Sengünes, R. Paoletti, M. Seyfried Micro-optics assembly for fast axis collimation by means of convolutional neural network. Opt Express, 29 (17) (2021), pp. 26765-26774
[131]
Liu S, Jia Y, Li YF, Guo Y, Lu H. Simultaneous precision assembly of multiple objects through coordinated micro-robot manipulation. In:Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA); 2021 May 30-Jun 5; Xi'an, China. Piscataway; IEEE; 2021. p. 6280-6.
[132]
Y. Wei, Q. Xu Design and testing of a new force-sensing cell microinjector based on soft flexure mechanism. IEEE Sens J, 19 (15) (2019), pp. 6012-6019
[133]
B. Gursky, S. Bütefisch, M. Leester-Schädel, K. Li, B. Matheis, A. Dietzel A disposable pneumatic microgripper for cell manipulation with image-based force sensing. Micromachines, 10 (10) (2019), p. 707
[134]
M. Power, A.J. Thompson, S. Anastasova, G.Z. Yang A monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization. Small, 14 (16) (2018), p. 1703964
[135]
W. Xu, H. Zhang, H. Yuan, B. Liang A compliant adaptive gripper and its intrinsic force sensing method. IEEE Trans Robot, 37 (5) (2021), pp. 1584-1603
[136]
H. Xie, X. Meng, H. Zhang, L. Sun Development of a magnetically driven microgripper for piconewton force-controlled microscale manipulation and characterization. IEEE Trans Ind Electron, 67 (3) (2020), pp. 2065-2075
[137]
S.E. Chung, X.G. Dong, M. Sitti Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lab Chip, 15 (7) (2015), pp. 1667-1676
[138]
D. Li, F. Niu, J. Li, X. Li, D. Sun Gradient-enhanced electromagnetic actuation system with a new core shape design for microrobot manipulation. IEEE Trans Ind Electron, 67 (6) (2020), pp. 4700-4710
[139]
Z. Yang, L. Yang, M. Zhang, Q. Wang, S.C.H. Yu, L. Zhang Magnetic control of a steerable guidewire under ultrasound guidance using mobile electromagnets. IEEE Robot Autom Lett, 6 (2) (2021), pp. 1280-1287
[140]
T. Sun, Y. Zhang, C. Power, P.M. Alexander, J.T. Sutton, M. Aryal, et al. Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model. Proc Natl Acad Sci USA, 114 (48) (2017), pp. E10281-E10290
[141]
T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang, J. Li, et al. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small, 16 (41) (2020), p. 1906908
[142]
S. Muiños-Landin, A. Fischer, V. Holubec, F. Cichos Reinforcement learning with artificial microswimmers. Sci Robot, 6(52):eabd9285 (2021)
[143]
Y. Yang, M.A. Bevan, B. Li Micro/nano motor navigation and localization via deep reinforcement learning. Adv Theory Simul, 3 (6) (2020), p. 2000034
[144]
Y. Yang, M.A. Bevan, B. Li Efficient navigation of colloidal robots in an unknown environment via deep reinforcement learning. Adv Intell Syst, 2 (1) (2020), p. 1900106
[145]
K. Belharet, D. Folio, A. Ferreira Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans Biomed Eng, 60 (4) (2013), pp. 994-1001
[146]
K. Meng, Y. Jia, H. Yang, F. Niu, Y. Wang, D. Sun Motion planning and robust control for the endovascular navigation of a microrobot. IEEE Trans Ind Inform, 16 (7) (2020), pp. 4557-4566
[147]
J. Jiang, L. Yang, L. Zhang Closed-loop control of a helmholtz coil system for accurate actuation of magnetic microrobot swarms. IEEE Robot Autom Lett, 6 (2) (2021), pp. 827-834
[148]
L. Arcese, M. Fruchard, A. Ferreira Adaptive controller and observer for a magnetic microrobot. IEEE Trans Robot, 29 (4) (2013), pp. 1060-1067
[149]
W. Ma, J. Li, F. Niu, H. Ji, D. Sun Robust control to manipulate a microparticle with electromagnetic coil system. IEEE Trans Ind Electron, 64 (11) (2017), pp. 8566-8577
[150]
J. Liu, X. Wu, C. Huang, L. Manamanchaiyaporn, W. Shang, X. Yan, et al. 3-D autonomous manipulation system of helical microswimmers with online compensation update. IEEE Trans Autom Sci Eng, 18 (3) (2021), pp. 1380-1391
[151]
Z. Yang, L. Yang, L. Zhang Autonomous navigation of magnetic microrobots in a large workspace using mobile-coil system. IEEE/ASME Trans Mechatron, 26 (6) (2021), pp. 3163-3174
[152]
T. Xu, J. Liu, C. Huang, T. Sun, X. Wu Discrete-time optimal control of miniature helical swimmers in horizontal plane. IEEE Trans Autom Sci Eng, 19 (3) (2022), pp. 2267-2277
[153]
Z. Zhang, F. Long, C.H. Menq Three-dimensional visual servo control of a magnetically propelled microscopic bead. IEEE Trans Robot, 29 (2) (2013), pp. 373-382
[154]
K. Belharet, D. Folio, A. Ferreira Control of a magnetic microrobot navigating in microfluidic arterial bifurcations through pulsatile and viscous flow, Vilamoura-Algarve, Portugal. Piscataway; IEEE (2012), pp. 2559-2564
[155]
S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, S. Seyfi, M. Sitti, S. Tasoglu 3D-printed microrobots from design to translation. Nat Commun, 13 (1) (2022), p. 5875
[156]
K. Yuan, B. Jurado-Sánchez, A. Escarpa Dual-propelled lanbiotic based janus micromotors for selective inactivation of bacterial biofilms. Angew Chem Int Ed, 60 (9) (2021), pp. 4915-4924
[157]
M. Pacheco, B. Jurado-Sánchez, A. Escarpa Sensitive monitoring of enterobacterial contamination of food using self-propelled janus microsensors. Anal Chem, 90 (4) (2018), pp. 2912-2917
[158]
S. Chizari, M.P. Lim, L.A. Shaw, S.P. Austin, J.B. Hopkins Automated optical-tweezers assembly of engineered microgranular crystals. Small, 16 (25) (2020), p. 2000314
[159]
Zhang Y, Keum H, Kim S. Microassembly of MEMS actuators and sensors via micro-masonry. In:Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS); 2013 Jan 20-24; Taipei, China. Piscataway; IEEE; 2017. p. 283-6.
[160]
A.N. Das, R. Murthy, D.O. Popa, H.E. Stephanou A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans Autom Sci Eng, 9 (1) (2012), pp. 160-170
[161]
T. Nieminen, N. Tiwary, G. Ross, M. Paulasto-Kröckel Detection of in-plane movement in electrically actuated microelectromechanical systems using a scanning electron microscope. Micromachines, 14 (3) (2023), p. 698
[162]
A.B. Mosberg, D. Ren, L. Ahtapodov, H. Weman, B.O. Fimland, A.T.J. van Helvoort Focused ion beam lithography for position-controlled nanowire growth. Nanotechnology, 34 (33) (2023), Article 335301
[163]
Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci Robot 2017 ;2(12):eaaq0495.
[164]
A. Aziz, S. Pane, V. Iacovacci, N. Koukourakis, J. Czarske, A. Menciassi, et al. Medical imaging of microrobots: toward in vivo applications. ACS Nano, 14 (9) (2020), pp. 10865-10893
[165]
R. Chen, D. Folio, A. Ferreira Analysis and comparison of electromagnetic microrobotic platforms for biomedical applications. Appl Sci, 12 (1) (2022), p. 456
[166]
S. Noh, S. Jeon, E. Kim, U. Oh, D. Park, S.H. Park, et al. A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small, 18 (25) (2022), p. 2107888
[167]
Song X, Fu W, Cheang UK. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy. iScience 2022 ;25(7):104507.
[168]
Z. Wu, Y. Zhang, N. Ai, H. Chen, W. Ge, Q. Xu Magnetic mobile microrobots for upstream and downstream navigation in biofluids with variable flow rate. Adv Intell Syst, 4 (7) (2022), p. 2100266
[169]
B.A. Darmawan, D. Gong, H. Park, S. Jeong, G. Go, S. Kim, et al. Magnetically controlled reversible shape-morphing microrobots with real-time X-ray imaging for stomach cancer applications. J Mater Chem B, 10 (23) (2022), pp. 4509-4518
[170]
M. Pacheco, C.C. Mayorga-Martinez, J. Viktorova, T. Ruml, A. Escarpa, M. Pumera Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destruction. Appl Mater Today, 27 (2022), Article 101494
[171]
Y. Du, E. Lo, S. Ali, A. Khademhosseini Directed assembly of cell-laden microgels for fabrication of 3d tissue constructs. Proc Natl Acad Sci USA, 105 (28) (2008), pp. 9522-9527
[172]
S. Tang, F. Zhang, H. Gong, F. Wei, J. Zhuang, E. Karshalev, et al. Enzyme-powered janus platelet cell robots for active and targeted drug delivery. Sci Robot (2020 ;5(43):eaba6137.)
[173]
H. Wang, Q. Shi, T. Yue, M. Nakajima, M. Takeuchi, Q. Huang, et al. Micro-assembly of a vascular-like micro-channel with railed micro-robot team-coordinated manipulation. Int J Adv Robot Syst, 11 (7) (2014), p. 115
[174]
T. Yue, M. Nakajima, M. Takeuchi, C. Hu, Q. Huang, T. Fukuda On-chip self-assembly of cell embedded microstructures to vascular-like microtubes. Lab Chip, 14 (6) (2014), pp. 1151-1161
[175]
H. Wang, Q. Huang, Q. Shi, T. Yue, S. Chen, M. Nakajima, et al. Automated assembly of vascular-like microtube with repetitive single-step contact manipulation. IEEE Trans Biomed Eng, 62 (11) (2015), pp. 2620-2628
[176]
X. Liu, Q. Shi, H. Wang, T. Sun, N. Yu, Q. Huang, et al. Automated fluidic assembly of microvessel-like structures using a multimicromanipulator system. IEEE/ASME Trans Mechatron, 23 (2) (2018), pp. 667-678
[177]
J. Cui, H. Wang, Z. Zheng, Q. Shi, T. Sun, Q. Huang, et al. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures. Biofabrication, 11 (1) (2018), Article 015016
[178]
T. Sun, Q. Shi, Y. Yao, J. Sun, H. Wang, Q. Huang, et al. Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach. Biofabrication, 11 (3) (2019), Article 035029
[179]
M. Takeuchi, M. Iriguchi, M. Hattori, E. Kim, A. Ichikawa, Y. Hasegawa, et al. Magnetic self-assembly of toroidal hepatic microstructures for micro-tissue fabrication. Biomed Mater, 15 (5) (2020), Article 055001
[180]
Akolpoglu MB, Alapan Y, Dogan NO, Baltaci SF, Yasa O, Aybar Tural G, et al. Magnetically steerable bacterial microrobots moving in 3d biological matrices for stimuli-responsive cargo delivery. Sci Adv 2022 ;8(28):eabo6163.
[181]
Q. Wang, X. Du, D. Jin, L. Zhang Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano, 16 (1) (2022), pp. 604-616
[182]
X. Song, R. Sun, R. Wang, K. Zhou, R. Xie, J. Lin, et al. Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery. Adv Mater, 34 (43) (2022), p. 2204791
[183]
Z. Cong, S. Tang, L. Xie, M. Yang, Y. Li, D. Lu, et al. Magnetic-powered janus cell robots loaded with oncolytic adenovirus for active and targeted virotherapy of bladder cancer. Adv Mater, 34 (26) (2022), p. 2201042
[184]
T. Yin, Z. Diao, N.T. Blum, L. Qiu, A. Ma, P. Huang Engineering bacteria and bionic bacterial derivatives with nanoparticles for cancer therapy. Small, 18 (12) (2022), p. 2104643
[185]
Wang B, Chan KF, Yuan K, Wang Q, Xia X, Yang L, et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci Robot 2021 ;6(52):eabd2813.
[186]
X. Wei, L. Luan, Z. Zhao, X. Li, H. Zhu, O. Potnis, et al. Nanofabricated ultraflexible electrode arrays for high-density intracortical recording. Adv Sci, 5 (6) (2018), p. 1700625
[187]
Z. Zhao, X. Li, F. He, X. Wei, S. Lin, C. Xie Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. J Neural Eng, 16 (3) (2019), Article 035001
[188]
Musk E, Neuralink. An integrated brain-machine interface platform with thousands of channels. J Med Internet Res 2019 ;21(10):e16194.
[189]
F. Qin, D. Xu, D. Zhang, W. Pei, X. Han, S. Yu Automated hooking of biomedical microelectrode guided by intelligent microscopic vision. IEEE/ASME Trans Mechatron, 28 (5) (2023), pp. 2786-2798
[190]
D. Su, J. Um, J. Moreno, Z. Nemati, K. Srinivasan, J. Chen, et al. GMR biosensing with magnetic nanowires as labels for the detection of osteosarcoma cells. Sens Actuators A, 350 (2023), Article 114115
[191]
C. Huang, J. Zhao, R. Lu, J. Wang, S.R. Nugen, Y. Chen, et al. A phage-based magnetic relaxation switching biosensor using bioorthogonal reaction signal amplification for salmonella detection in foods. Food Chem, 400 (2023), Article 134035
[192]
T. Pal, S. Aditya, T. Mathai, S. Mukherji Polyaniline coated plastic optic fiber biosensor for detection of aflatoxin B1 in nut, cereals, beverages, and body fluids. Sens Actuators B, 389 (2023), Article 133897
[193]
X. Wen, X. Chang, A. Li, X. Yang, F. Tian, Z. Liu, et al. ZnO/Cu2O heterojunction integrated fiber-optic biosensor for remote detection of cysteine. Biosens Bioelectron, 223 (2023), Article 115021
[194]
M. Gagliardi, M. Agostini, F. Lunardelli, L. Lamanna, A. Miranda, A. Bazzichi, et al. Surface acoustic wave-based lab-on-a-chip for the fast detection of legionella pneumophila in water. Sens Actuators B, 379 (2023), Article 133299
[195]
C. Chen, B. Ran, B. Liu, X. Liu, Y. Liu, M. Lan, et al. Development of a novel microfluidic biosensing platform integrating micropillar array electrode and acoustic microstreaming techniques. Biosens Bioelectron, 223 (2023), Article 114703
[196]
L. Gao, J. Wang, Y. Zhao, H. Li, M. Liu, J. Ding, et al. Free-standing nanofilm electrode arrays for long-term stable neural interfacings. Adv Mater, 34 (5) (2022), p. 2107343
[197]
M.A. Riza, Y.I. Go, S.W. Harun, R.R.J. Maier FBG sensors for environmental and biochemical applications—a review. IEEE Sens J, 20 (14) (2020), pp. 7614-7627
[198]
M.U. Farooq, S.Y. Ko A decade of MRI compatible robots: systematic review. IEEE Trans Robot, 39 (2) (2022), pp. 862-884
[199]
S. Huang, C. Lou, Y. Zhou, Z. He, X. Jin, Y. Feng, et al. MRI-guided robot intervention—current state-of-the-art and new challenges. Med-X, 1 (2023), p. 4
[200]
Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, et al. The grand challenges of science robotics. Sci Robot 2018 ;3(14):eaar7650.
[201]
Y. Guo, W. Chen, J. Zhao, G.Z. Yang Medical robotics: opportunities in china. Annu Rev Control Robot Auton Syst, 5 (1) (2022), pp. 361-383
[202]
L. Zhu, C. Shao, H. Chen, Z. Chen, Y. Zhao Hierarchical hydrogels with ordered micro-nano structures for cancer-on-a-chip construction. Research, 2021 ( 2021), p. 9845679
基金
 
PDF(5683 KB)

Accesses

Citation

Detail

段落导航
相关文章

/