[1] | E.I. Rivin Mechanical design of robots. McGraw-Hill, New York (1987) |
[2] | Zesch W, Brunner M, Weber A. Vacuum tool for handling microobjects with a nanorobot. In:Proceedings of the International Conference on Robotics and Automation; 1997 Apr 25-25; Albuquerque, NM, USA. Piscataway; IEEE; 2002. p. 1761-6. |
[3] | M. Sitti Microscale and nanoscale robotics systems. IEEE Robot Autom Mag, 14 (1) (2007), pp. 53-60 |
[4] | F. Arai, D. Ando, T. Fukuda, Y. Nonoda, T. Oota Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement. In:Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (2002), pp. 236-241 |
[5] | Fearing RS. Survey of sticking effects for micro parts handling. In:Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots; 1995 Aug 5-9; Pittsburgh, PA, USA. Piscataway; IEEE; 2002. p. 212-7. |
[6] | A. Menciassi, A. Eisinberg, I. Izzo, P. Dario From“ macro” to“ micro” manipulation: models and experiments. IEEE/ASME Trans Mechatron, 9 (2) (2004), pp. 311-320 |
[7] | Y. Yu, C. Jiang, X.T. Zheng, Y. Liu, W.P. Goh, R.H.H. Lim, et al. Three-dimensional highway-like graphite flakes/carbon fiber hybrid electrode for electrochemical biosensor. Mater Today Adv, 14 (2022), Article 100238 |
[8] | T. Li, S. Yu, B. Sun, Y. Li, X. Wang, Y. Pan, et al. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Sci Adv, 9(18):eadg4501 (2023) |
[9] | W. Zhang, Y. Deng, J. Zhao, T. Zhang, X. Zhang, W. Song, et al. Amoeba-inspired magnetic venom microrobots. Small, 19 (23) (2023), p. 2207360 |
[10] | J. Yu, B. Wang, X. Du, Q. Wang, L. Zhang. Ultra-extensible ribbon-like magnetic microswarm. Nat Commun, 9 (1) (2018), p. 3260 |
[11] | W. Shi, J. Huang, R. Fang, M. Liu Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response. ACS Appl Mater Interfaces, 12 (5) (2020), pp. 5177-5194 |
[12] | J. Yu, D. Jin, K.F. Chan, Q. Wang, K. Yuan, L. Zhang Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun, 10 (1) (2019), p. 5631 |
[13] | L. Tan, B. Liu, U. Glebe, A. Böker Magnetic field-induced assembly of superparamagnetic cobalt nanoparticles on substrates and at liquid-air interface. Langmuir, 34 (46) (2018), pp. 13993-14002 |
[14] | T. Wen, W. Zhu, C. Xue, J. Wu, Q. Han, X. Wang, et al. Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron, 56 (2014), pp. 180-185 |
[15] | J. Liu, T. Zhou, T. Han, L. Zhu, Y. Wang, Y. Hu, et al. Engineering a ternary one-dimensional Fe2P@SnP 0.94@MoS 2 mesostructure through magnetic-field-induced self-assembly as a high-performance lithium-ion battery anode. Chem Commun, 58 (33) (2022), pp. 5108-5111 |
[16] | M. Park, S. Kang, C. Nam, K. Narasimha, W.B. Lee, S.J. Park Magnetic field-induced self-assembly of conjugated block copolymers and nanoparticles at the air-water interface. ACS Appl Mater Interfaces, 14 (6) (2022), pp. 8266-8273 |
[17] | J. Mohapatra, J. Elkins, M. Xing, D. Guragain, S.R. Mishra, J.P. Liu Magnetic-field-induced self-assembly of FeCo/CoFe2O4 core/shell nanoparticles with tunable collective magnetic properties. Nanoscale, 13 (8) (2021), pp. 4519-4529 |
[18] | K.J. Jeong, D.K. Lee, V.T. Tran, C. Wang, J. Lv, J. Park, et al. Helical magnetic field-induced real-time plasmonic chirality modulation. ACS Nano, 14 (6) (2020), pp. 7152-7160 |
[19] | Khalil IS, van den Brink F, Sukas OS, Misra S. Microassembly using a cluster of paramagnetic microparticles. In:Proceedings of the 2013 IEEE Inter- national Conference on Robotics and Automation; 2013 May 6-10; Karlsruhe, Germany. Piscataway; IEEE; 2013. p. 5527-32. |
[20] | L. Xia, R. Liu, J. Liu, X. Zhu, A. Ding, Q. Cao Radial magnetic levitation and its application to density measurement, separation, and detection of microplastics. Anal Chem, 95 (22) (2023), pp. 8660-8667 |
[21] | X. Dong, M. Sitti Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. Int J Robot Res, 39 (5) (2020), pp. 617-638 |
[22] | X. Hu, I.C. Yasa, Z. Ren, S.R. Goudu, H. Ceylan, W. Hu, et al. Magnetic soft micromachines made of linked microactuator networks. Sci Adv, 7(23):eabe8436 (2021) |
[23] | M. Jílek, M. Somr, M. Kulich, J. Zeman, L. Přeučil. Towards a passive self-assembling macroscale multi-robot system. IEEE Robot Autom Lett, 6 (4) (2021), pp. 7293-7300 |
[24] | H. Gu, Q. Boehler, D. Ahmed, B.J. Nelson Magnetic quadrupole assemblies with arbitrary shapes and magnetizations. Sci Robot, 4(35):eaax8977 (2019) |
[25] | X. Yang, R. Tan, H. Lu, T. Fukuda, Y. Shen Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously. Nat Commun, 13 (1) (2022), p. 4156 |
[26] | S. Tasoglu, C. Yu, H.I. Gungordu, S. Guven, T. Vural, U. Demirci Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat Commun, 5 (1) (2014), p. 4702 |
[27] | R. Khalesi, M. Yousefi, H.N. Pishkenari, G. Vossoughi Robust independent and simultaneous position control of multiple magnetic microrobots by sliding mode controller. Mechatronics, 84 (2022), Article 102776 |
[28] | H. Lee, D. Lee, S. Jeon A two-dimensional manipulation method for a magnetic microrobot with a large region of interest using a triad of electromagnetic coils. Micromachines, 13 (3) (2022), p. 416 |
[29] | C.C. Mayorga-Martinez, J. Vyskoil, F. Novotny, P. Bednar, D. Ruzek, O. Alduhaish, et al. Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Appl Mater Today, 26 (2022), Article 101337 |
[30] | M. Pacheco, C.C. Mayorga-Martinez, A. Escarpa, M. Pumera Micellar polymer magnetic microrobots as efficient nerve agent microcleaners. ACS Appl Mater Interfaces, 14 (22) (2022), pp. 26128-26134 |
[31] | F. Zhao, W. Rong, D. Li, L. Wang, L. Sun Four-dimensional design and programming of shape-memory magnetic helical micromachines. Appl Mater Today, 27 (2022), Article 101422 |
[32] | A. Barbot, H. Tan, M. Power, F. Seichepine, G.Z. Yang Floating magnetic microrobots for fiber functionalization. Sci Robot, 4(34):eaax8336 (2019) |
[33] | Y. Alapan, B. Yigit, O. Beker, A.F. Demirörs, M. Sitti Shape-encoded dynamic assembly of mobile micromachines. Nat Mater, 18 (11) (2019), pp. 1244-1251 |
[34] | S. Tasoglu, E. Diller, S. Guven, M. Sitti, U. Demirci Untethered micro-robotic coding of three-dimensional material composition. Nat Commun, 5 (1) (2014), p. 3124 |
[35] | B.V. Johnson, S. Chowdhury, D.J. Cappelleri Local magnetic field design and characterization for independent closed-loop control of multiple mobile microrobots. IEEE/ASME Trans Mechatron, 25 (2) (2020), pp. 526-534 |
[36] | X. Yang, R. Tan, H. Lu, Y. Shen Magnetic-directed manipulation and assembly of fragile bioartificial architectures in the liquid-liquid interface. IEEE/ASME Trans Mechatron, 27 (5) (2022), pp. 3590-3600 |
[37] | Hsu A, Cowan C, Chu W, McCoy B, Wong-Foy A, Pelrine R, et al. Automated 2D micro-assembly using diamagnetically levitated milli-robots. In: Proceedings of the 2017 inter- national conference on manipulation, automation and robotics at small scales (MARSS); 2017 Jul 17-21; Montreal, QC, Canada. Piscataway; IEEE; 2017. p. 1-6. |
[38] | T. Yao, N.G. Chisholm, E.B. Steager, K.J. Stebe Directed assembly and micro-manipulation of passive particles at fluid interfaces via capillarity using a magnetic micro-robot. Appl Phys Lett, 116 (4) (2020), Article 043702 |
[39] | Z. Ji, C. Yan, B. Yu, X. Wang, F. Zhou Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Adv Mater Interfaces, 4 (22) (2017), p. 1700629 |
[40] | C.R. Dunn, B.P. Lee, R.M. Rajachar Thermomagnetic-responsive self-folding microgrippers for improving minimally invasive surgical techniques and biopsies. Molecules, 27 (16) (2022), p. 5196 |
[41] | A. Ghosh, Y. Liu, D. Artemov, D.H. Gracias Magnetic resonance guided navigation of untethered microgrippers. Adv Healthc Mater, 10 (4) (2021), p. 2000869 |
[42] | K. Han, C.W. Shields IV, N.M. Diwakar, B. Bharti, G.P. L’opez, O.D. Velev Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. Sci Adv, 3 (8) (2017), p. e1701108 |
[43] | Kararsiz G, Rogowski LW, Zhang X, Bhattacharjee A, Kim MJ. Adaptive tracking controller for an alginate artificial cell. In:Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2021 Sep 27-Oct 1; Prague, Czech Republic. Piscataway; IEEE; 2021. p. 7483-9. |
[44] | L. Xu, D. Gong, N. Celi, J. Xu, D. Zhang, J. Cai Biohybrid magnetic microrobots for enhanced photocatalytic rhb degradation and E. coli inactivation under visible light irradiation. Appl Surf Sci, 579 (2022), Article 152165 |
[45] | Feng Y, Feng L, Dai Y, Bai X, Zhang C, Chen Y, et al. A novel and controllable cell-based microrobot in real vascular network for target tumor therapy. In:Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020 Oct 24-2021 Jan 14; Las Vegas, NV, USA. Piscataway; IEEE; 2021. p. 2828-33. |
[46] | D. Gong, N. Celi, D. Zhang, J. Cai Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl Mater Interfaces, 14 (5) (2022), pp. 6320-6330 |
[47] | D.P. Singh, U. Choudhury, P. Fischer, A.G. Mark Non-equilibrium assembly of light-activated colloidal mixtures. Adv Mater, 29 (32) (2017), p. 1701328 |
[48] | J.E. Melzer, E. McLeod Assembly of multicomponent structures from hundreds of micron-scale building blocks using optical tweezers. Microsyst Nanoeng, 7 (1) (2021), p. 45 |
[49] | Maruo S, Ikuta K, Hayato K. Light-driven mems made by high-speed two-photon microstereolithography. In:Proceedings of the Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090); 2001 Jun 25- 25; Interlaken, Switzerland. Piscataway; IEEE; 2002. p. 594-7. |
[50] | V. de la Asunción-Nadal, D. Rojas, Jurado-Sa’nchez B, Escarpa A. Transition metal dichalcogenide micromotors with programmable photophoretic swarming motion. J Mater Chem A, 11 (3) (2023), pp. 1239-1245 |
[51] | P. Mena-Giraldo, M. Kaur, S.L. Maurizio, G.A. Mandl, J.A. Capobianco Janus micromotors for photophoretic motion and photon upconversion applications using a single near-infrared wavelength. ACS Appl Mater Interfaces, 16 (3) (2024), pp. 4249-4260 |
[52] | X. Liang, F. Mou, Z. Huang, J. Zhang, M. You, L. Xu, et al. Hierarchical microswarms with leader-follower-like structures: electrohydrodynamic self-organization and multimode collective photoresponses. Adv Funct Mater, 30 (16) (2020), p. 1908602 |
[53] | F. Mou, J. Zhang, Z. Wu, S. Du, Z. Zhang, L. Xu, et al. Phototactic flocking of photochemical micromotors. iScience, 19 (2019), pp. 415-424 |
[54] | S. Che, J. Zhang, F. Mou, X. Guo, J.E. Kauffman, A. Sen, et al. Light-programmable assemblies of isotropic micromotors. Research, 2022 ( 2022), p. 9816562 |
[55] | Tong J, Wang D, Liu Y, Luo X, Jiang J, Dong B, et al. Bioinspired micro/nanomotor with visible light energy-dependent forward, reverse, reciprocating, and spinning schooling motion. Proc Natl Acad Sci USA 2021 ;118(42):e2104481118. |
[56] | J.D. Kim, S.U. Hwang, Y.G. Lee Traceable assembly of microparts using optical tweezers. J Micromech Microeng, 22 (10) (2012), Article 105003 |
[57] | J.M. Tam, I. Biran, D.R. Walt An imaging fiber-based optical tweezer array for microparticle array assembly. Appl Phys Lett, 84 (21) (2004), pp. 4289-4291 |
[58] | J.D. Kim, Y.G. Lee Construction and actuation of a microscopic gear assembly formed using optical tweezers. J Micromech Microeng, 23 (6) (2013), Article 065010 |
[59] | K. Castelino, S. Satyanarayana, M. Sitti Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly. Robotica, 23 (4) (2005), pp. 435-439 |
[60] | S. Ghosh, S. Das, S. Paul, P. Thomas, B. Roy, P. Mitra, et al. In situ self-assembly and photopolymerization for hetero-phase synthesis and patterning of conducting materials using soft oxometalates in thermo-optical tweezers. J Mater Chem C, 5 (27) (2017), pp. 6718-6728 |
[61] | H. Tang, T. Kishi, T. Yano In situ assembling of glass microspheres and bonding force analysis by the ultraviolet-near-infrared dual-beam optical tweezer system. ACS Omega, 6 (18) (2021), pp. 11869-11877 |
[62] | R.E. Holmlin, M. Schiavoni, C.Y. Chen, S.P. Smith, M.G. Prentiss, G.M. Whitesides Light-driven microfabrication: assembly of multicomponent, three-dimensional structures by using optical tweezers. Angew Chem Int Ed, 39 (19) (2000), pp. 3503-3506 |
[63] | G.R. Kirkham, E. Britchford, T. Upton, J. Ware, G.M. Gibson, Y. Devaud, et al. Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci Rep, 5 (2015), p. 8577 |
[64] | X. Wang, X. Gou, S. Chen, X. Yan, D. Sun Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition. J Micromech Microeng, 23 (7) (2013), Article 075006 |
[65] | U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, et al. Live cell lithography: using optical tweezers to create synthetic tissue. Lab Chip, 8 (12) (2008), pp. 2174-2181 |
[66] | S. Pradhan, C.P. Whitby, M.A. Williams, J.L.Y. Chen, E. Avci Interfacial colloidal assembly guided by optical tweezers and tuned via surface charge. J Colloid Interface Sci, 621 (2022), pp. 101-109 |
[67] | X. Zou, Q. Zheng, D. Wu, H. Lei Controllable cellular micromotors based on optical tweezers. Adv Funct Mater, 30 (27) (2020), p. 2002081 |
[68] | M. Tanaka, I. Kuramichi, Y. Tsuboi, K. Yuyama Confinement and aggregation of colloidal particles in an ionic liquid microdroplet formed by optical tweezers. Jpn J Appl Phys, 61 (10) (2022), Article 100901 |
[69] | X. Shan, F. Wang, D. Wang, S. Wen, C. Chen, X. Di, et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat Nanotechnol, 16 (5) (2021), pp. 531-537 |
[70] | K. Melde, E. Choi, Z. Wu, S. Palagi, T. Qiu, P. Fischer Acoustic fabrication via the assembly and fusion of particles. Adv Mater, 30 (3) (2018), p. 1704507 |
[71] | K. Melde, H. Kremer, M. Shi, S. Seneca, C. Frey, I. Platzman, et al. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. Sci Adv, 9(6):eadf6182 (2023) |
[72] | Z. Ma, A.W. Holle, K. Melde, T. Qiu, K. Poeppel, V.M. Kadiri, et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv Mater, 32 (4) (2020), p. 1904181 |
[73] | Y. Sun, Y. Luo, T. Xu, G. Cheng, H. Cai, X. Zhang Acoustic aggregation-induced separation for enhanced fluorescence detection of alzheimer’s biomarker. Talanta, 233 (2021), Article 122517 |
[74] | T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, et al. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J Am Chem Soc, 137 (6) (2015), pp. 2163-2166 |
[75] | Y. Huang, T. Xu, Y. Luo, C. Liu, X. Gao, Z. Cheng, et al. Ultra-trace protein detection by integrating lateral flow biosensor with ultrasound enrichment. Anal Chem, 93 (5) (2021), pp. 2996-3001 |
[76] | T. Tang, L. Huang Mie particle assembly by a converging ultrasound field and acoustic interaction forces. Appl Acoust, 180 (2021), Article 108123 |
[77] | J. Greenhall, F. Guevara Vasquez, B. Raeymaekers Ultrasound directed self-assembly of user-specified patterns of nanoparticles dispersed in a fluid medium. Appl Phys Lett, 108 (10) (2016), Article 103103 |
[78] | M. Prisbrey, J. Greenhall, F. Guevara Vasquez, B. Raeymaekers Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium. J Appl Phys, 121 (1) (2017), Article 014302 |
[79] | M. Prisbrey, F. Guevara Vasquez, B. Raeymaekers Arranging ellipsoidal particles in three-dimensional user-specified orientations with ultrasound-directed self-assembly. Phys Rev Appl, 14 (2) (2020), Article 024026 |
[80] | M. Prisbrey, B. Raeymaekers Aligning high-aspect-ratio particles in user-specified orientations with ultrasound-directed self-assembly. Phys Rev Appl, 12 (1) (2019), Article 014014 |
[81] | M. Prisbrey, F. Guevara Vasquez, B. Raeymaekers 3D ultrasound directed self-assembly of high aspect ratio particles: on the relationship between the number of transducers and their spatial arrangement. Appl Phys Lett, 117 (11) (2020), Article 111904 |
[82] | L. Feng, B. Song, Y. Chen, S. Liang, Y. Dai, Q. Zhou, et al. On-chip rotational manipulation of microbeads and oocytes using acoustic microstreaming generated by oscillating asymmetrical microstructures. Biomicrofluidics, 13 (6) (2019), Article 064103 |
[83] | P. Wadsworth, I. Nelson, D.L. Porter, B. Raeymaekers, S.E. Naleway Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing. Mater Des, 185 (2020), Article 108243 |
[84] | J. Greenhall, B. Raeymaekers 3D printing macroscale engineered ma- terials using ultrasound directed self-assembly and stereolithography. Adv Mater Technol, 2 (9) (2017), p. 1700122 |
[85] | K. Niendorf, B. Raeymaekers Combining ultrasound directed self-assembly and stereolithography to fabricate engineered polymer matrix composite materials with anisotropic electrical conductivity. Compos Part B, 223 (2021), Article 109096 |
[86] | K. Niendorf, B. Raeymaekers Quantifying macro- and microscale alignment of carbon microfibers in polymer-matrix composite materials fabricated using ultrasound directed self-assembly and 3D-printing. Compos Part A, 129 (2020), Article 105713 |
[87] | Y. Wei, X.L. Lu, H. Shen, H.M. Peng, Z.Y. Yuan, X.S. Guo, et al. An acousto-microrobotic interface with vision-feedback control. Adv Mater Technol, 12 (6) (2021), p. 2100470 |
[88] | X. Lu, K. Zhao, W. Liu, D. Yang, H. Shen, H. Peng, et al. A human microrobot interface based on acoustic manipulation. ACS Nano, 13 (10) (2019), pp. 11443-11452 |
[89] | M. Schrage, M. Medany, D. Ahmed. Ultrasound microrobots with reinforcement learning. Adv Mater Technol, 8 (10) (2023), p. 2201702 |
[90] | Reinhart G, Heinz M, Stock J, Zimmermann J, Schilp M, Zitzmann A, et al. Non-contact handling and transportation for substrates and microassembly using ultrasound-air-film-technology. In: Proceedings of the 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference; 2011 May 16-18; Saratoga Springs, NY, USA. Piscataway; IEEE; 2011. p. 1-6. |
[91] | S. Mohanty, R.J. Fidder, P.M. Matos, C.M. Heunis, M. Kaya, N. Blanken, et al. SonoTweezer: an acoustically powered end-effector for underwater micromanipulation. IEEE Trans Ultrason Ferroelectr Freq Control, 69 (3) (2022), pp. 988-997 |
[92] | J. Durrer, P. Agrawal, A. Ozgul, S.C.F. Neuhauss, N. Nama, D. Ahmed. A robot-assisted acoustofluidic end effector. Nat Commun, 13 (1) (2022), p. 6370 |
[93] | Y. Yang, T. Ma, Q. Zhang, J. Huang, Q. Hu, Y. Li, et al. 3D acoustic manipulation of living cells and organisms based on 2D array. IEEE Trans Biomed Eng, 69 (7) (2022), pp. 2342-2352 |
[94] | T. Luo, M. Wu. Biologically inspired micro-robotic swimmers remotely controlled by ultrasound waves. Lab Chip, 21 (21) (2021), pp. 4095-4103 |
[95] | Ichikawa A, Sakuma S, Arai F, Akagi S. Untethered micro-robot with gripping mechanism for on-chip cell surgery utilizing outer magnetic force. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA); 2014 May 31-Jun7; Hong Kong, China. Piscataway; IEEE; 2014. p. 3795-800. |
[96] | Z. Lyu, Q. Xu, L. Zhu Design and development of a new piezoelectric-actuated biaxial compliant microgripper with long strokes. IEEE Trans Autom Sci Eng, 20 (1) (2023), pp. 206-217 |
[97] | M. Probst, C. Hürzeler, R. Borer, B.J. Nelson A microassembly system for the flexible assembly of hybrid robotic mems devices. Int J Optomechatronics, 3 (2) (2009), pp. 69-90 |
[98] | T.K. Das, B. Shirinzadeh, A. Al-Jodah, M. Ghafarian, J. Pinskier Computational parametric analysis and experimental investigations of a compact flexure-based microgripper. Precis Eng, 66 (2020), pp. 363-373 |
[99] | T.K. Das, B. Shirinzadeh, M. Ghafarian, A. Al-Jodah, Y. Zhong, J. Smith Design, analysis and experimental investigations of a high precision flexure-based microgripper for micro/nano manipulation. Mechatronics, 69 (2020), Article 102396 |
[100] | C. Shi, X. Dong, Z. Yang A microgripper with a large magnification ratio and high structural stiffness based on a flexure-enabled mechanism. IEEE/ASME Trans Mechatron, 26 (6) (2021), pp. 3076-3086 |
[101] | G. Si, L. Sun, Z. Zhang, X. Zhang Theoretical thermal-mechanical modelling and experimental validation of a three-dimensional (3D) electrothermal microgripper with three fingers. Micromachines, 12 (12) (2021), p. 1512 |
[102] | G. Si, M. Ding, Z. Zhang, X. Zhang Theoretical thermal-mechanical modelling and experimental validation of a novel 3D three-fingered electrothermal microgripper. Precis Eng, 77 (2022), pp. 205-219 |
[103] | Ramya S, Kumar SP, Aravind T, Srinivasan T, Ram GD, Lingaraja D. Thermal inplane microgripper for handling micro-objects. In:Proceedings of the 2022 7th International Conference on Communication and Electronics Systems (ICCES); 2022 Jun 22- 24; Coimbatore, India. Piscataway; IEEE; 2022. p. 210-4. |
[104] | B.K. Chen, Y. Zhang, Y. Sun Active release of microobjects using a mems microgripper to overcome adhesion forces. J Microelectromech Syst, 18 (3) (2009), pp. 652-659 |
[105] | Beyeler F, Bell DJ, Nelson BJ, Sun Y, Neild A, Oberti S, et al. Design of a micro-gripper and an ultrasonic manipulator for handling micron sized objects. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006 Oct 9- 15; Beijing, China. Piscataway; IEEE; 2007. p. 772-7. |
[106] | Ma Y, Du K, Zhou D, Zhang J, Liu X, Xu D. Automatic precision robot assembly system with microscopic vision and force sensor. Int J Adv Robot Syst 2019 ;16(3):1729881419851619. |
[107] | Komati B, Kudryavtsev A, Clévy C, Laurent G, Tamadazte B, Agnus J, et al. Automated robotic microassembly of flexible optical components. In:Proceedings of the 2016 IEEE International Symposium on Assembly and Manufacturing (ISAM); 2016 Aug 21-22; Fort Worth, TX, USA. Piscataway; IEEE; 2016. p. 93-8. |
[108] | G. Fantoni, O. Jorg, V. Tincani Indirect force measurement system in a mechanical microgripper. Precis Eng, 78 (2022), pp. 206-214 |
[109] | T. Aravind, S. Praveen Kumar, G. Dinesh Ram, D. Lingaraja Analysis of material profile for polymer-based mechanical microgripper for thin plate holding. E. Priya, V. Rajinikanth (Eds.), Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, Springer, Cham (2020), pp. 103-117 |
[110] | G. De. Pasquale Design and modeling of MEMS microgrippers for laser-based additive manufacturing. Micro, 2 (2) (2022), pp. 225-239 |
[111] | H. McClintock, F.Z. Temel, N. Doshi, J. Koh, R.J. Wood The millidelta: a high-bandwidth, high-precision, millimeter-scale delta robot. Sci Robot, 3(14):eaar3018 (2018) |
[112] | M. Leveziel, W. Haouas, G.J. Laurent, M. Gauthier, R. Dahmouche Migribot: a miniature parallel robot with integrated gripping for high-throughput micromanipulation. Sci Robot, 7(69):eabn4292 (2022) |
[113] | D. Zhang, J. Chen, W. Li, D. Bautista Salinas, G.Z. Yang A microsurgical robot research platform for robot-assisted microsurgery research and training. Int J CARS, 15 (2020), pp. 15-25 |
[114] | Sariola V, Zhou Q, Koivo HN. Three dimensional hybrid microassembly combining robotic microhandling and self-assembly. In:Proceedings of the 2009 IEEE International Conference on Robotics and Automation; 2009 May 12- 17; Kobe, Japan. Piscataway; IEEE; 2009. p. 2605-10. |
[115] | V. Sariola, M. Jääskeläinen Q. Zhou Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans Robot, 26 (6) (2010), pp. 965-977 |
[116] | Z. Ge, L. Dai, J. Zhao, H. Yu, W. Yang, X. Liao, et al. Bubble-based microrobots enable digital assembly of heterogeneous microtissue modules. Biofabrication, 14 (2) (2022), Article 025023 |
[117] | W. Yin, Y. Wang, H. Liu, M. Sun, Y. Zhang, H. Yuan, et al. SCbots: stomatocyte-like colloidosomes as versatile microrobots fabricated by one-step self-assembly. Chem Eng J, 490 (2024), Article 151952 |
[118] | L. Kang, J. Zhao, H. Zhu, L. Zhu, G. Li, L. Wang, et al. Bubble jet propulsion of a “flying shuttle” zinc phosphate micro robot driven by enzyme-catalyzed reaction. Inorg Chem Commun, 157 (2023), Article 111242 |
[119] | S. Kim, Y. Jiang, K.L. Thompson Towell, M.S. Boutilier, N. Nayakanti, C. Cao, et al. Soft nanocomposite electroadhesives for digital micro- and nanotransfer printing. Sci Adv, 5(10):eaax4790 (2019) |
[120] | M.S.H. Boutilier, C. Cao, N. Nayakanti, S. Kim, S.M. Taheri-Mousavi, A.J. Hart Limiting mechanisms and scaling of electrostatically controlled adhesion of soft nanocomposite surfaces for robotic gripping. ACS Appl Mater Interfaces, 13 (1) (2021), pp. 1192-1203 |
[121] | D. Wei, Q. Xiong, J. Dong, H. Wang, X. Liang, S. Tang, et al. Electrostatic adhesion clutch with superhigh force density achieved by mxene-poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) composites. Soft Robot, 10 (3) (2023), pp. 482-492 |
[122] | J. Zhang, X. Dai, W. Wu, K. Du Micro-vision based high-precision space assembly approach for trans-scale micro-device: the CFTA example. Sensors, 23 (1) (2023), p. 450 |
[123] | D.H. Wang, K. Wang, L.S. Qiang Depth estimation method of surface of micropart in microassembly space based on microscopic vision tomographic scanning images. J Microsc, 283 (2) (2021), pp. 77-92 |
[124] | Xie T, Zhang X, Li H, Zhang J. Hybrid feature based 6D pose tracking under binocular vision for automated micro-assembly. In:Proceedings of the 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE); 2023 Feb 10- 12; Shenzhen, China. Piscataway; IEEE; 2023. p. 112-7. |
[125] | D. Wei, M.B. Hall, A. Sherehiy, D.O. Popa Design and evaluation of human-machine interface for nexus: a custom microassembly system. J Micro Nano-Manuf, 8 (4) (2020), Article 041011 |
[126] | Z. Zhang, X. Wang, H. Zhao, T. Ren, Z. Xu, Y. Luo The machine vision measurement module of the modularized flexible precision assembly station for assembly of micro- and meso-sized parts. Micromachines, 11 (10) (2020), p. 918 |
[127] | Bolya D, Zhou C, Xiao F, Lee YJ. YOLACT: real-time instance segmentation. In:Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV); 2019 Oct 27-Nov 2; Seoul, Republic of Korean. Piscataway; IEEE; 2020. p. 9156-65. |
[128] | J. Cheng, W. Wu, Y. Yang, J. Zhang Yolact in micro-assembly robot system, Association for Computing Machinery, Sanya, China. New York (2022), pp. 1-5 |
[129] | F. Li, D. Gao, Y. Yang, J. Zhu Small target deep convolution recognition algorithm based on improved YOLOv4. Int J Mach Learn Cybern, 14 (2) (2023), pp. 387-394 |
[130] | A. Khachikyan, G. Pippione, M.I. Sengünes, R. Paoletti, M. Seyfried Micro-optics assembly for fast axis collimation by means of convolutional neural network. Opt Express, 29 (17) (2021), pp. 26765-26774 |
[131] | Liu S, Jia Y, Li YF, Guo Y, Lu H. Simultaneous precision assembly of multiple objects through coordinated micro-robot manipulation. In:Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA); 2021 May 30-Jun 5; Xi'an, China. Piscataway; IEEE; 2021. p. 6280-6. |
[132] | Y. Wei, Q. Xu Design and testing of a new force-sensing cell microinjector based on soft flexure mechanism. IEEE Sens J, 19 (15) (2019), pp. 6012-6019 |
[133] | B. Gursky, S. Bütefisch, M. Leester-Schädel, K. Li, B. Matheis, A. Dietzel A disposable pneumatic microgripper for cell manipulation with image-based force sensing. Micromachines, 10 (10) (2019), p. 707 |
[134] | M. Power, A.J. Thompson, S. Anastasova, G.Z. Yang A monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization. Small, 14 (16) (2018), p. 1703964 |
[135] | W. Xu, H. Zhang, H. Yuan, B. Liang A compliant adaptive gripper and its intrinsic force sensing method. IEEE Trans Robot, 37 (5) (2021), pp. 1584-1603 |
[136] | H. Xie, X. Meng, H. Zhang, L. Sun Development of a magnetically driven microgripper for piconewton force-controlled microscale manipulation and characterization. IEEE Trans Ind Electron, 67 (3) (2020), pp. 2065-2075 |
[137] | S.E. Chung, X.G. Dong, M. Sitti Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lab Chip, 15 (7) (2015), pp. 1667-1676 |
[138] | D. Li, F. Niu, J. Li, X. Li, D. Sun Gradient-enhanced electromagnetic actuation system with a new core shape design for microrobot manipulation. IEEE Trans Ind Electron, 67 (6) (2020), pp. 4700-4710 |
[139] | Z. Yang, L. Yang, M. Zhang, Q. Wang, S.C.H. Yu, L. Zhang Magnetic control of a steerable guidewire under ultrasound guidance using mobile electromagnets. IEEE Robot Autom Lett, 6 (2) (2021), pp. 1280-1287 |
[140] | T. Sun, Y. Zhang, C. Power, P.M. Alexander, J.T. Sutton, M. Aryal, et al. Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model. Proc Natl Acad Sci USA, 114 (48) (2017), pp. E10281-E10290 |
[141] | T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang, J. Li, et al. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small, 16 (41) (2020), p. 1906908 |
[142] | S. Muiños-Landin, A. Fischer, V. Holubec, F. Cichos Reinforcement learning with artificial microswimmers. Sci Robot, 6(52):eabd9285 (2021) |
[143] | Y. Yang, M.A. Bevan, B. Li Micro/nano motor navigation and localization via deep reinforcement learning. Adv Theory Simul, 3 (6) (2020), p. 2000034 |
[144] | Y. Yang, M.A. Bevan, B. Li Efficient navigation of colloidal robots in an unknown environment via deep reinforcement learning. Adv Intell Syst, 2 (1) (2020), p. 1900106 |
[145] | K. Belharet, D. Folio, A. Ferreira Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans Biomed Eng, 60 (4) (2013), pp. 994-1001 |
[146] | K. Meng, Y. Jia, H. Yang, F. Niu, Y. Wang, D. Sun Motion planning and robust control for the endovascular navigation of a microrobot. IEEE Trans Ind Inform, 16 (7) (2020), pp. 4557-4566 |
[147] | J. Jiang, L. Yang, L. Zhang Closed-loop control of a helmholtz coil system for accurate actuation of magnetic microrobot swarms. IEEE Robot Autom Lett, 6 (2) (2021), pp. 827-834 |
[148] | L. Arcese, M. Fruchard, A. Ferreira Adaptive controller and observer for a magnetic microrobot. IEEE Trans Robot, 29 (4) (2013), pp. 1060-1067 |
[149] | W. Ma, J. Li, F. Niu, H. Ji, D. Sun Robust control to manipulate a microparticle with electromagnetic coil system. IEEE Trans Ind Electron, 64 (11) (2017), pp. 8566-8577 |
[150] | J. Liu, X. Wu, C. Huang, L. Manamanchaiyaporn, W. Shang, X. Yan, et al. 3-D autonomous manipulation system of helical microswimmers with online compensation update. IEEE Trans Autom Sci Eng, 18 (3) (2021), pp. 1380-1391 |
[151] | Z. Yang, L. Yang, L. Zhang Autonomous navigation of magnetic microrobots in a large workspace using mobile-coil system. IEEE/ASME Trans Mechatron, 26 (6) (2021), pp. 3163-3174 |
[152] | T. Xu, J. Liu, C. Huang, T. Sun, X. Wu Discrete-time optimal control of miniature helical swimmers in horizontal plane. IEEE Trans Autom Sci Eng, 19 (3) (2022), pp. 2267-2277 |
[153] | Z. Zhang, F. Long, C.H. Menq Three-dimensional visual servo control of a magnetically propelled microscopic bead. IEEE Trans Robot, 29 (2) (2013), pp. 373-382 |
[154] | K. Belharet, D. Folio, A. Ferreira Control of a magnetic microrobot navigating in microfluidic arterial bifurcations through pulsatile and viscous flow, Vilamoura-Algarve, Portugal. Piscataway; IEEE (2012), pp. 2559-2564 |
[155] | S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, S. Seyfi, M. Sitti, S. Tasoglu 3D-printed microrobots from design to translation. Nat Commun, 13 (1) (2022), p. 5875 |
[156] | K. Yuan, B. Jurado-Sánchez, A. Escarpa Dual-propelled lanbiotic based janus micromotors for selective inactivation of bacterial biofilms. Angew Chem Int Ed, 60 (9) (2021), pp. 4915-4924 |
[157] | M. Pacheco, B. Jurado-Sánchez, A. Escarpa Sensitive monitoring of enterobacterial contamination of food using self-propelled janus microsensors. Anal Chem, 90 (4) (2018), pp. 2912-2917 |
[158] | S. Chizari, M.P. Lim, L.A. Shaw, S.P. Austin, J.B. Hopkins Automated optical-tweezers assembly of engineered microgranular crystals. Small, 16 (25) (2020), p. 2000314 |
[159] | Zhang Y, Keum H, Kim S. Microassembly of MEMS actuators and sensors via micro-masonry. In:Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS); 2013 Jan 20-24; Taipei, China. Piscataway; IEEE; 2017. p. 283-6. |
[160] | A.N. Das, R. Murthy, D.O. Popa, H.E. Stephanou A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans Autom Sci Eng, 9 (1) (2012), pp. 160-170 |
[161] | T. Nieminen, N. Tiwary, G. Ross, M. Paulasto-Kröckel Detection of in-plane movement in electrically actuated microelectromechanical systems using a scanning electron microscope. Micromachines, 14 (3) (2023), p. 698 |
[162] | A.B. Mosberg, D. Ren, L. Ahtapodov, H. Weman, B.O. Fimland, A.T.J. van Helvoort Focused ion beam lithography for position-controlled nanowire growth. Nanotechnology, 34 (33) (2023), Article 335301 |
[163] | Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci Robot 2017 ;2(12):eaaq0495. |
[164] | A. Aziz, S. Pane, V. Iacovacci, N. Koukourakis, J. Czarske, A. Menciassi, et al. Medical imaging of microrobots: toward in vivo applications. ACS Nano, 14 (9) (2020), pp. 10865-10893 |
[165] | R. Chen, D. Folio, A. Ferreira Analysis and comparison of electromagnetic microrobotic platforms for biomedical applications. Appl Sci, 12 (1) (2022), p. 456 |
[166] | S. Noh, S. Jeon, E. Kim, U. Oh, D. Park, S.H. Park, et al. A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small, 18 (25) (2022), p. 2107888 |
[167] | Song X, Fu W, Cheang UK. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy. iScience 2022 ;25(7):104507. |
[168] | Z. Wu, Y. Zhang, N. Ai, H. Chen, W. Ge, Q. Xu Magnetic mobile microrobots for upstream and downstream navigation in biofluids with variable flow rate. Adv Intell Syst, 4 (7) (2022), p. 2100266 |
[169] | B.A. Darmawan, D. Gong, H. Park, S. Jeong, G. Go, S. Kim, et al. Magnetically controlled reversible shape-morphing microrobots with real-time X-ray imaging for stomach cancer applications. J Mater Chem B, 10 (23) (2022), pp. 4509-4518 |
[170] | M. Pacheco, C.C. Mayorga-Martinez, J. Viktorova, T. Ruml, A. Escarpa, M. Pumera Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destruction. Appl Mater Today, 27 (2022), Article 101494 |
[171] | Y. Du, E. Lo, S. Ali, A. Khademhosseini Directed assembly of cell-laden microgels for fabrication of 3d tissue constructs. Proc Natl Acad Sci USA, 105 (28) (2008), pp. 9522-9527 |
[172] | S. Tang, F. Zhang, H. Gong, F. Wei, J. Zhuang, E. Karshalev, et al. Enzyme-powered janus platelet cell robots for active and targeted drug delivery. Sci Robot (2020 ;5(43):eaba6137.) |
[173] | H. Wang, Q. Shi, T. Yue, M. Nakajima, M. Takeuchi, Q. Huang, et al. Micro-assembly of a vascular-like micro-channel with railed micro-robot team-coordinated manipulation. Int J Adv Robot Syst, 11 (7) (2014), p. 115 |
[174] | T. Yue, M. Nakajima, M. Takeuchi, C. Hu, Q. Huang, T. Fukuda On-chip self-assembly of cell embedded microstructures to vascular-like microtubes. Lab Chip, 14 (6) (2014), pp. 1151-1161 |
[175] | H. Wang, Q. Huang, Q. Shi, T. Yue, S. Chen, M. Nakajima, et al. Automated assembly of vascular-like microtube with repetitive single-step contact manipulation. IEEE Trans Biomed Eng, 62 (11) (2015), pp. 2620-2628 |
[176] | X. Liu, Q. Shi, H. Wang, T. Sun, N. Yu, Q. Huang, et al. Automated fluidic assembly of microvessel-like structures using a multimicromanipulator system. IEEE/ASME Trans Mechatron, 23 (2) (2018), pp. 667-678 |
[177] | J. Cui, H. Wang, Z. Zheng, Q. Shi, T. Sun, Q. Huang, et al. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures. Biofabrication, 11 (1) (2018), Article 015016 |
[178] | T. Sun, Q. Shi, Y. Yao, J. Sun, H. Wang, Q. Huang, et al. Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach. Biofabrication, 11 (3) (2019), Article 035029 |
[179] | M. Takeuchi, M. Iriguchi, M. Hattori, E. Kim, A. Ichikawa, Y. Hasegawa, et al. Magnetic self-assembly of toroidal hepatic microstructures for micro-tissue fabrication. Biomed Mater, 15 (5) (2020), Article 055001 |
[180] | Akolpoglu MB, Alapan Y, Dogan NO, Baltaci SF, Yasa O, Aybar Tural G, et al. Magnetically steerable bacterial microrobots moving in 3d biological matrices for stimuli-responsive cargo delivery. Sci Adv 2022 ;8(28):eabo6163. |
[181] | Q. Wang, X. Du, D. Jin, L. Zhang Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano, 16 (1) (2022), pp. 604-616 |
[182] | X. Song, R. Sun, R. Wang, K. Zhou, R. Xie, J. Lin, et al. Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery. Adv Mater, 34 (43) (2022), p. 2204791 |
[183] | Z. Cong, S. Tang, L. Xie, M. Yang, Y. Li, D. Lu, et al. Magnetic-powered janus cell robots loaded with oncolytic adenovirus for active and targeted virotherapy of bladder cancer. Adv Mater, 34 (26) (2022), p. 2201042 |
[184] | T. Yin, Z. Diao, N.T. Blum, L. Qiu, A. Ma, P. Huang Engineering bacteria and bionic bacterial derivatives with nanoparticles for cancer therapy. Small, 18 (12) (2022), p. 2104643 |
[185] | Wang B, Chan KF, Yuan K, Wang Q, Xia X, Yang L, et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci Robot 2021 ;6(52):eabd2813. |
[186] | X. Wei, L. Luan, Z. Zhao, X. Li, H. Zhu, O. Potnis, et al. Nanofabricated ultraflexible electrode arrays for high-density intracortical recording. Adv Sci, 5 (6) (2018), p. 1700625 |
[187] | Z. Zhao, X. Li, F. He, X. Wei, S. Lin, C. Xie Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. J Neural Eng, 16 (3) (2019), Article 035001 |
[188] | Musk E, Neuralink. An integrated brain-machine interface platform with thousands of channels. J Med Internet Res 2019 ;21(10):e16194. |
[189] | F. Qin, D. Xu, D. Zhang, W. Pei, X. Han, S. Yu Automated hooking of biomedical microelectrode guided by intelligent microscopic vision. IEEE/ASME Trans Mechatron, 28 (5) (2023), pp. 2786-2798 |
[190] | D. Su, J. Um, J. Moreno, Z. Nemati, K. Srinivasan, J. Chen, et al. GMR biosensing with magnetic nanowires as labels for the detection of osteosarcoma cells. Sens Actuators A, 350 (2023), Article 114115 |
[191] | C. Huang, J. Zhao, R. Lu, J. Wang, S.R. Nugen, Y. Chen, et al. A phage-based magnetic relaxation switching biosensor using bioorthogonal reaction signal amplification for salmonella detection in foods. Food Chem, 400 (2023), Article 134035 |
[192] | T. Pal, S. Aditya, T. Mathai, S. Mukherji Polyaniline coated plastic optic fiber biosensor for detection of aflatoxin B1 in nut, cereals, beverages, and body fluids. Sens Actuators B, 389 (2023), Article 133897 |
[193] | X. Wen, X. Chang, A. Li, X. Yang, F. Tian, Z. Liu, et al. ZnO/Cu2O heterojunction integrated fiber-optic biosensor for remote detection of cysteine. Biosens Bioelectron, 223 (2023), Article 115021 |
[194] | M. Gagliardi, M. Agostini, F. Lunardelli, L. Lamanna, A. Miranda, A. Bazzichi, et al. Surface acoustic wave-based lab-on-a-chip for the fast detection of legionella pneumophila in water. Sens Actuators B, 379 (2023), Article 133299 |
[195] | C. Chen, B. Ran, B. Liu, X. Liu, Y. Liu, M. Lan, et al. Development of a novel microfluidic biosensing platform integrating micropillar array electrode and acoustic microstreaming techniques. Biosens Bioelectron, 223 (2023), Article 114703 |
[196] | L. Gao, J. Wang, Y. Zhao, H. Li, M. Liu, J. Ding, et al. Free-standing nanofilm electrode arrays for long-term stable neural interfacings. Adv Mater, 34 (5) (2022), p. 2107343 |
[197] | M.A. Riza, Y.I. Go, S.W. Harun, R.R.J. Maier FBG sensors for environmental and biochemical applications—a review. IEEE Sens J, 20 (14) (2020), pp. 7614-7627 |
[198] | M.U. Farooq, S.Y. Ko A decade of MRI compatible robots: systematic review. IEEE Trans Robot, 39 (2) (2022), pp. 862-884 |
[199] | S. Huang, C. Lou, Y. Zhou, Z. He, X. Jin, Y. Feng, et al. MRI-guided robot intervention—current state-of-the-art and new challenges. Med-X, 1 (2023), p. 4 |
[200] | Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, et al. The grand challenges of science robotics. Sci Robot 2018 ;3(14):eaar7650. |
[201] | Y. Guo, W. Chen, J. Zhao, G.Z. Yang Medical robotics: opportunities in china. Annu Rev Control Robot Auton Syst, 5 (1) (2022), pp. 361-383 |
[202] | L. Zhu, C. Shao, H. Chen, Z. Chen, Y. Zhao Hierarchical hydrogels with ordered micro-nano structures for cancer-on-a-chip construction. Research, 2021 ( 2021), p. 9845679 |