[1] |
Buchholz K. How has the world’s urban population changed from 1950 to today? [Internet] Geneva: World Economic Forum; 2020 Nov 4 [cited2024 Oct 11]. Available from:
|
[2] |
H.P. Chen, Y.Q. Ni. Structural health monitoring of large civil engineering structures. John Wiley & Sons Ltd, West Sussex (2018).
|
[3] |
X. Lu, X.Z. Lu, H. Guan, L.P. Ye. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes. Earthquake Eng Struct Dynam, 42 (5) (2013), pp. 705-723.
|
[4] |
X.Z. Lu, L.L. Xie, H. Guan, Y.L. Huang, X. Lu. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elem Anal Des, 98 (2015), pp. 14-25.
|
[5] |
X.Z. Lu, D.L. Gu, Z. Xu, C. Xiong, Y. Tian. CIM-powered multi-hazard simulation framework covering both individual buildings and urban areas. Sustainability, 12 (12) (2020), p. 5059.
|
[6] |
Y. Fujino, D.M. Siringoringo, Y. Ikeda, T. Nagayama, T. Mizutani. Research and implementations of structural monitoring for bridges and buildings in Japan. Engineering, 5 (6) (2019), pp. 1093-1119.
|
[7] |
K.Q. Lin, Y.L. Xu, X.Z. Lu, Z.G. Guan, J.Z. Li. Cluster computing-aided model updating for a high-fidelity finite element model of a long-span cable-stayed bridge. Earthquake Eng Struct Dynam, 49 (9) (2020), pp. 904-923.
|
[8] |
K.Q. Lin, Y.L. Xu, X.Z. Lu, Z.G. Guan, J.Z. Li. Digital twin-based life-cycle seismic performance assessment of a long-span cable-stayed bridge. Bull Earthquake Eng, 21 (2) (2023), pp. 1203-1227.
|
[9] |
Grieves M,. Vickers J. Digital twin:mitigating unpredictable, undesirable emergent behavior in complex systems. In: KahlenJ, FlumerfeltS, AlvesA, editors. Transdisciplinary perspectives on complex systems:new findings and approaches. Cham: Springer; 2017. p. 85-113.
|
[10] |
F. Tao, Q. Qi, L. Wang, A.Y. Nee. Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering, 5 (4) (2019), pp. 653-661.
|
[11] |
M. Liebenberg, M. Jarke. Information systems engineering with digital shadows: concept and use cases in the internet of production. Inf Syst, 114 (2023), Article 102182.
|
[12] |
Z. Zheng, W.J. Liao, J.R. Lin, Y.C. Zhou, C. Zhang, X.Z. Lu. Digital twin-based investigation of a building collapse accident. Adv Civ Eng, 2022 (1) (2022), Article 9568967.
|
[13] |
M. Marienkov, I. Kaliukh, O. Trofymchuk. The digital twin use for modeling the multi-storey building response to seismic impacts. Struct Concr, 25 (3) (2024), pp. 2079-2096.
|
[14] |
K.Q. Lin, Y.L. Xu, X.Z. Lu, Z.G. Guan, J.Z. Li. Collapse prognosis of a long-span cable-stayed bridge based on shake table test and nonlinear model updating. Earthquake Eng Struct Dynam, 50 (2) (2021), pp. 455-474.
|
[15] |
K.Q. Lin, Y.L. Xu, X.Z. Lu, Z.G. Guan, J.Z. Li. Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Autom Construct, 123 (2021), Article 103547.
|
[16] |
D. Feng, M.Q. Feng. Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection—a review. Eng Struct, 156 (2018), pp. 105-117.
|
[17] |
A. Güemes, A. Fernandez-Lopez, A.R. Pozo, J. Sierra-Pérez. Structural health monitoring for advanced composite structures: a review. J Compos Sci, 4 (1) (2020), p. 13.
|
[18] |
C. Kralovec, M. Schagerl. Review of structural health monitoring methods regarding a multi-sensor approach for damage assessment of metal and composite structures. Sensors, 20 (3) (2020), p. 826.
|
[19] |
X.W. Ye, T.H. Yi, C.Z. Dong, T. Liu, H. Bai. Multi-point displacement monitoring of bridges using a vision-based approach. Wind Struct, 20 (2) (2015), pp. 315-326.
|
[20] |
C.Z. Dong, F.N. Catbas. A review of computer vision-based structural health monitoring at local and global levels. Struct Health Monit, 20 (2) (2021), pp. 692-743.
|
[21] |
J.W. Park, D.S. Moon, H. Yoon, F. Gomez, B.F. Spencer Jr, J.R. Kim. Visual-inertial displacement sensing using data fusion of vision-based displacement with acceleration. Struct Contr Health Monit, 25 (3) (2018), p. 2122.
|
[22] |
B.F. Spencer Jr, V. Hoskere, Y. Narazaki. Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering, 5 (2) (2019), pp. 199-222.
|
[23] |
D. Feng, M.Q. Feng. Vision-based multipoint displacement measurement for structural health monitoring. Struct Contr Health Monit, 23 (5) (2016), pp. 876-890.
|
[24] |
Z. Dworakowski, P. Kohut, A. Gallina, K. Holak, T. Uhl. Vision-based algorithms for damage detection and localization in structural health monitoring. Struct Contr Health Monit, 23 (1) (2016), pp. 35-50.
|
[25] |
H. Yoon, H. Elanwar, H. Choi, M. Golparvar-Fard, B.F. Spencer Jr. Target-free approach for vision-based structural system identification using consumer-grade cameras. Struct Contr Health Monit, 23 (12) (2016), pp. 1405-1416.
|
[26] |
Y. Yang, C. Dorn, T. Mancini, Z. Talken, G. Kenyon, C. Farrar, et al. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech Syst Signal Process, 85 (2017), pp. 567-590.
|
[27] |
C.J. Sun, D.L. Gu, X.Z. Lu. Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation. Mech Syst Signal Process, 190 (2023), Article 110141.
|
[28] |
C.J. Sun, D.L. Gu, Y. Zhang, X.Z. Lu. Vision-based displacement measurement enhanced by super-resolution using generative adversarial networks. Struct Contr Health Monit, 29 (10) (2022), p. 3048.
|
[29] |
Z. Wang, J. Chen, S.C. Hoi. Deep learning for image super-resolution: a survey. IEEE Trans Pattern Anal Mach Intell, 43 (10) (2021), pp. 3365-3387.
|
[30] |
S. Hoque, M.Y. Arafat, S. Xu, A. Maiti, Y. Wei. A comprehensive review on 3D object detection and 6D pose estimation with deep learning. IEEE Access, 9 (2021), pp. 143746-143770.
|
[31] |
Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, et al. Photo-realistic single image super-resolution using a generative adversarial network. In:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21-26; Honolulu, HI, USA. New York City: IEEE; 2017. p. 4681-90.
|
[32] |
Zhang Z, Wang Z, Lin Z, Qi H. Image super-resolution by neural texture transfer. In:Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019 June 15-20; Long Beach, CA, USA. New York City: IEEE; 2019. p. 7982-91.
|
[33] |
Zakharov S, Shugurov I, Ilic S. DPOD:6D pose object detector and refiner. In:Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019 Oct 27-Nov 2; Seoul, Republic of Korea. New York City: IEEE; 2019. p. 1941-50.
|
[34] |
G. Billings, M. Johnson-Roberson. Silhonet: an RGB method for 6D object pose estimation. IEEE Robot Autom Lett, 4 (4) (2019), pp. 3727-3734.
|
[35] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al. Generative adversarial networks. Commun ACM, 63 (11) (2020), pp. 139-144.
|
[36] |
Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2001 Jul 7-14; Vancouver, BC, Canada. New York City: IEEE; 2001. p. 416-23.
|
[37] |
Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. arXiv:1412.6980.
|
[38] |
Y.F. Ji, C.C. Chang. Nontarget image-based technique for small cable vibration measurement. J Bridge Eng, 13 (1) (2008), pp. 34-42.
|
[39] |
E. Caetano, S. Silva, J. Bateira. A vision system for vibration monitoring of civil engineering structures. Exp Tech, 35 (4) (2011), pp. 74-82.
|
[40] |
Li XL, Wang H, Yi L, Guibas LJ, Abbott AL, Song S. Category-level articulated object pose estimation. In:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020 Jun 13-19. Seattle, WA, USA. New York City: IEEE; 2020. p. 3706-15.
|
[41] |
Hinterstoisser S, Lepetit V, Ilic S, Holzer S, Bradski G, Konolige K, et al. Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee KM, Matsushita Y, Rehg JM, Hu Z, editors. Proceedings of the 11th Asian Conference on Computer Vision; 2012 Nov 5-9; Daejeon, Republic of Korea. Berlin: Springer; 2013. p. 548-62.
|
[42] |
Brachmann E, Krull A, Michel F, Gumhold S, Shotton J, Rother C. Learning 6D object pose estimation using 3D object coordinates. In: FleetD, PajdlaT, SchieleB, TuytelaarsT, editors. Proceedings of the 13th European Conference on Computer Vision; 2014 Sep 6-12; Zurich, Switzerland. Cham: Springer International Publishing; 2014. p. 536-51.
|
[43] |
He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27-30; Las Vegas, NV, USA. New York City: IEEE; 2016. p. 770-8.
|
[44] |
J.M. Blain. The complete guide to blender graphics:computer modeling & animation. AK Peters/CRC Press, New York City (2019).
|
[45] |
S. Dev, A. Nautiyal, Y.H. Lee, S. Winkler. CloudSegNet: a deep network for nychthemeron cloud image segmentation. IEEE Geosci Remote Sens Lett, 16 (12) (2019), pp. 1814-2188.
|
[46] |
Brincker R, Andersen P. Understanding stochastic subspace identification. In:Proceedings of IMAC-XXIV: Conference & Exposition on Structural Dynamics Society for Experimental Mechanics; 2006 Jan 30-Feb 2; St Louis, MI, USA. New York City: Curran Associates, Inc; 2006.
|
[47] |
X.Z. Lu, H. Guan. Earthquake disaster simulation of civil infrastructures: from tall buildings to urban areas. (2th ed.), Springer, Singapore (2021).
|
[48] |
Mirjalili S. Genetic algorithm. In: KacprzykJ, editor. Evolutionary algorithms and neural networks-studies in computational intelligence. Berlin: 2019.
|
[49] |
D.L. Gu, P.J. Zhao, W. Chen, Y.L. Huang, X.Z. Lu. Near real-time prediction of wind-induced tree damage at a city scale: simulation framework and case study for Tsinghua University campus. Int J Disaster Risk Reduct, 53 (2021), Article 102003.
|
[50] |
D.L. Gu, W. Chen, X.Z. Lu. Automated assessment of wind damage to windows of buildings at a city scale based on oblique photography, deep learning and CFD. J Build Eng, 52 (2022), Article 104355.
|
[51] |
D.L. Gu, A. Kareem, X.Z. Lu, Q.L. Cheng. A computational framework for the simulation of wind effects on buildings in a cityscape. J Wind Eng Ind Aerodyn, 234 (2023), Article 105347.
|
[52] |
D.L. Gu, Q.W. Shuai, Y. Wang, Y.X. Wang. CIM-powered physics-based assessment of wind damages to building clusters considering trees. Dev Built Environ, 15 (2023), Article 100178.
|
[53] |
Matsson JE. An introduction to Ansys fluent 2023. Mission: SDC Publications; 2023.
|
[54] |
J. Franke, A. Hellsten, H. Schlünzen, B. Carissimo. Best practice guideline for the CFD simulation of flows in the urban environment, cost action 732: quality assurance and improvement of microscale meteorological models. COST Office, Brussels (2007).
|
[55] |
Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn, 96 (10-11) (2008), pp. 1749-1761.
|
[56] |
Architectural Institute of Japan (AIJ). Guidelines for the evaluation of habitability to building vibration. Tokyo: Architectural Institute of Japan; 2004.
|