基于高正交性随机超表面信道的杂化层光存储

赵东, 连泓坤, 康学亮, 黄坤

工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 79-87.

PDF(3138 KB)
PDF(3138 KB)
工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 79-87. DOI: 10.1016/j.eng.2024.10.014
研究论文
Article

基于高正交性随机超表面信道的杂化层光存储

作者信息 +

Hybrid-Layer Data Storage with High-Orthogonality Random Meta-Channels

Author information +
History +

摘要

光学数据存储(Optical data storage,ODS)是传统电子或磁性存储的低成本、高耐久性的替代方案。多层记录(Multiple recording layer,MRL)方法作为增强ODS容量的一种常用手段,比其他方法如减少记录体积和多路复用技术更具前景。然而,当前MRL的架构与将数据记录到具有实际空间体积的物理层中相同,这也导致了严重的层间串扰或有限的记录层数(受限于物镜的短工作距离)。在此,我们提出了杂化层ODS的概念:通过使用高正交性随机通道,将光学信息同时记录到单个物理层和多个虚拟层中。在虚拟层中,通过计算全息重建了32幅图像,其中它们的全息相位被编码到物理层中的16幅打印图像和其互补图像中,共实现了2.5 Tbit·cm−3的存储密度。增加更多的虚拟层数可实现更高的存储容量,这表明杂化层ODS方法有望成为下一代ODS的候选方案。

Abstract

Optical data storage (ODS) is a low-cost and high-durability counterpart of traditional electronic or magnetic storage. As a means of enhancing ODS capacity, the multiple recording layer (MRL) method is more promising than other approaches such as reducing the recording volume and multiplexing technology. However, the architecture of current MRLs is identical to that of recording data into physical layers with rigid space, which leads to either severe interlayer crosstalk or finite recording layers constrained by the short working distances of the objectives. Here, we propose the concept of hybrid-layer ODS, which can record optical information into a physical layer and multiple virtual layers by using high-orthogonality random meta-channels. In the virtual layer, 32 images are experimentally reconstructed through holography, where their holographic phases are encoded into 16 printed images and complementary images in the physical layer, yielding a capacity of 2.5 Tbit·cm−3. A higher capacity is achievable with more virtual layers, suggesting hybrid-layer ODS as a possible candidate for next-generation ODS.

关键词

光学数据存储 / 超表面 / 高正交性通道 / 物理层 / 虚拟层

Keywords

Optical data storage / Metasurfaces / High-orthogonality meta-channels / Physical layer / Virtual layer

引用本文

导出引用
赵东, 连泓坤, 康学亮. 基于高正交性随机超表面信道的杂化层光存储. Engineering. 2025, 45(2): 79-87 https://doi.org/10.1016/j.eng.2024.10.014

参考文献

[1]
Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP.Computational solutions to large-scale data management and analysis.Nat Rev Genet 2010; 11(9):647-657.
[2]
Trelles O, Prins P, Snir M, Jansen RC.Big data, but are we ready?.Nat Rev Genet 2011; 12(3):224.
[3]
Kim SS, Yong SK, Kim W, Kang S, Park HW, Yoon KJ, et al.Review of semiconductor flash memory devices for material and process issues.Adv Mater 2023; 35(43):2200659.
[4]
Gao K.Architecture for hard disk drives.IEEE Magn Lett 2018; 9:4501705.
[5]
Gu M, Li X, Cao Y.Optical storage arrays: a perspective for future big data storage.Light Sci Appl 2014; 3(5):e177.
[6]
Gu M, Zhang Q, Lamon S.Nanomaterials for optical data storage.Nat Rev Mater 2016; 1(12):16070.
[7]
Monge R, Delord T, Meriles CA.Reversible optical data storage below the diffraction limit.Nat Nanotechnol 2024; 19(2):202-207.
[8]
Zhao M, Wen J, Hu Q, Wei X, Zhong YW, Ruan H, et al.A 3D nanoscale optical disk memory with petabit capacity.Nature 2024; 626(8000):772-778.
[9]
Zhang J, Gecevi Mčius, Beresna M, Kazansky PG.Seemingly unlimited lifetime data storage in nanostructured glass.Phys Rev Lett 2014; 112(3):033901.
[10]
Jiang M, Zhang M, Li X, Cao Y.Research progress of super-resolution optical data storage.Opto Electron Eng 2019; 46:180649.
[11]
Cai J, Huang W.Three-dimensional information storage of polymer doped with nano-silver.Microw Opt Technol Lett 2015; 57(11):2662-2665.
[12]
Zhou Y, Tang H, Huang W, Xia A, Sun F, Zhang F.Three-dimensional optical data storage in a novel photochromic material with two-photon writing and one-photon readout.Opt Eng 2005; 44(3):035202.
[13]
Li X, Cao Y, Tian N, Fu L, Gu M.Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate.Optica 2015; 2(6):567.
[14]
Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, et al.Diffraction-unlimited all-optical imaging and writing with a photochromic GFP.Nature 2011; 478(7368):204-208.
[15]
Li X, Cao Y, Gu M.Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam.Opt Lett 2011; 36(13):2510.
[16]
Zijlstra P, Chon JWM, Gu M.Five-dimensional optical recording mediated by surface plasmons in gold nanorods.Nature 2009; 459(7245):410-413.
[17]
Ouyang X, Xu Y, Xian M, Feng Z, Zhu L, Cao Y, et al.Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing.Nat Photonics 2021; 15(12):901-907.
[18]
Wang H, Lei Y, Wang L, Sakakura M, Yu Y, Shayeganrad G, et al.100-Layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass.Laser Photonics Rev 2022; 16(4):2100563.
[19]
Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al.Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science 2011; 334(6054):333-337.
[20]
Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, et al.Silicon multi-meta-holograms for the broadband visible light.Laser Photonics Rev 2016; 10(3):500-509.
[21]
Khorasaninejad M, Capasso F.Metalenses: versatile multifunctional photonic components.Science 2017; 358(6367):eaam8100.
[22]
Lin D, Fan P, Hasman E, Brongersma ML.Dielectric gradient metasurface optical elements.Science 2014; 345(6194):298-302.
[23]
Zhao D, Lin Z, Zhu W, Lezec HJ, Xu T, Agrawal A, et al.Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces.Nanophotonics 2021; 10(9):2283-2308.
[24]
Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J.Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation.Nano Lett 2014; 14(3):1394-1399.
[25]
Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, et al.Multicolor 3D meta-holography by broadband plasmonic modulation.Sci Adv 2016; 2(11):e1601102.
[26]
Nan T, Zhao H, Guo J, Wang X, Tian H, Zhang Y.Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces.Opto Electron Sci 2024; 3(5):230052.
[27]
Fu R, Chen K, Li Z, Yu S, Zheng G.Metasurface-based nanoprinting: principle, design and advances.Opto Electron Sci 2022; 1(10):220011.
[28]
Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, et al.Three-dimensional optical holography using a plasmonic metasurface.Nat Commun 2013; 4:2808.
[29]
Huang K, Deng J, Leong HS, Yap SLK, Yang RB, Teng J, et al.Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting.Laser Photonics Rev 2019; 13(5):1800289.
[30]
Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, et al.Low-loss metasurface optics down to the deep ultraviolet region.Light Sci Appl 2020; 9:55.
[31]
Fu W, Zhao D, Li Z, Liu S, Tian C, Huang K.Ultracompact meta-imagers for arbitrary all-optical convolution.Light Sci Appl 2022; 11(1):62.
[32]
Zhao D, Dong Z, Huang K.High-efficiency holographic metacoder for optical masquerade.Opt Lett 2021; 46(6):1462.
[33]
Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, et al.Terahertz metamaterials for linear polarization conversion and anomalous refraction.Science 2013; 340(6138):1304-1307.
[34]
Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S.Metasurface holograms reaching 80% efficiency.Nat Nanotechnol 2015; 10(4):308-312.
[35]
Xie X, Pu M, Jin J, Xu M, Guo Y, Li X, et al.Generalized Pancharatnam–Berry phase in rotationally symmetric meta-atoms.Phys Rev Lett 2021; 126(18):183902.
[36]
Zhang F, Guo Y, Pu M, Chen L, Xu M, Liao M, et al.Meta-optics empowered vector visual cryptography for high security and rapid decryption.Nat Commun 2023; 14:1946.
[37]
Guo Y, Zhang S, Pu M, He Q, Jin J, Xu M, et al.Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation.Light Sci Appl 2021; 10:63.
[38]
Gerhberg R, Saxton W.A practical algorithm for the determination of the phase from image and diffraction plane pictures.Optik 1972; 35(2):237-246.
[39]
Huang K, Qin F, Liu H, Ye H, Qiu CW, Hong M, et al.Planar diffractive lenses: fundamentals, functionalities, and applications.Adv Mater 2018; 30(26):1704556.
[40]
Huang K, Gao H, Cao G, Shi P, Zhang X, Li Y.Design of diffractive phase element for modulating the electric field at the out-of-focus plane in a lens system.Appl Opt 2012; 51(21):5149-5153.
[41]
Huang L, Zhang S, Zentgraf T.Metasurface holography: from fundamentals to applications.Nanophotonics 2018; 7(6):1169-1190.
[42]
Huang K, Liu H, Si G, Wang Q, Lin J, Teng J.Photon-nanosieve for ultrabroadband and large-angle-of-view holograms.Laser Photonics Rev 2017; 11(3):1700025.
[43]
Zhao D, Fu W, Li Z, He J, Huang K.Phase-probability shaping for speckle-free holographic lithography.2022. arXiv: 2211.09962.
[44]
Cao H, Chriki R, Bittner S, Friesem AA, Davidson N.Complex lasers with controllable coherence.Nat Rev Phys 2019; 1(2):156-168.
[45]
Makey G, Yavuz Ö, Kesim DK, Turnal Aı, Elahi P, Ilday S, et al.Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors.Nat Photonics 2019; 13(4):251-256.
[46]
He J, Zhao D, Liu H, Teng J, Qiu CW, Huang K.An entropy-controlled objective chip for reflective confocal microscopy with subdiffraction-limit resolution.Nat Commun 2023; 14:5838.
[47]
Ayres RU.Information, entropy, and progress: a new evolutionary paradigm. Springer Science & Business Media, New York City (1997)
[48]
He J, Liu H, Zhao D, Mehta JS, Qiu CW, Sun F, et al.High-order diffraction for optical superfocusing.Nat Commun 2024; 15:7819.
[49]
Li T, Chen C, Xiao X, Chen J, Hu S, Zhu S.Revolutionary meta-imaging: from superlens to metalens.Photonics Insights 2023; 2(1):R01.
[50]
Sha J, Kadis A, Wetherfield B, Meng R, Huang Z, Singh D, et al.Information capacity of phase-only computer-generated holograms for holographic displays. In: Proceedings of SPIE Photonics Europe; 2024 Apr 7–12; Strasbourg, France. Washington: SPIE; 2024.
[51]
Maurer C, Jesacher A, Bernet S, Ritsch-Marte M.What spatial light modulators can do for optical microscopy.Laser Photonics Rev 2011; 5(1):81-101.
[52]
Yang DK, Wu ST.Fundamentals of liquid crystal devices. John Wiley & Sons, Chichester (2014)
PDF(3138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/