[1] |
Matheson DS, Dennison PE.Evaluating the effects of spatial resolution on hyperspectral fire detection and temperature retrieval.Remote Sens Environ 2012; 124:780-792.
|
[2] |
Jia J, Wang Y, Chen J, Guo R, Shu R, Wang J, et al.Status and application of advanced airborne hyperspectral imaging technology: a review.Infrared Phys Techn 2020; 104:103115.
|
[3] |
Foerster S, Brosinsky A, Koch K, Eckardt R.Hyperedu online learning program for hyperspectral remote sensing: concept, implementation and lessons learned.Int J Appl Earth Obs Geoinformation 2024; 131:103983.
|
[4] |
Guerri MF, Distante C, Spagnolo P, Bougourzi F, Taleb-Ahmed A.Deep learning techniques for hyperspectral image analysis in agriculture: a review.ISPRS Open J Photogramm Remote Sens 2024; 12:100062.
|
[5] |
Liu C, Hu Q, Zhang C, Xia C, Yin H, Su W, et al.First Chinese ultraviolet–visible hyperspectral satellite instrument implicating global air quality during the COVID-19 pandemic in early 2020.Light-Sci Appl 2022; 11(1):28.
|
[6] |
Zhang X, Fang X, Li T, Gu G, Li H, Shao Y, et al.Multi-channel hyperspectral imaging spectrometer design for ultraviolet detection in the atmosphere of Venus.Remote Sens 2024; 16(6):1099.
|
[7] |
Yang G, Huang K, Sun W, Meng X, Mao D, Ge Y, et al.Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove.ISPRS J Photogramm Remote Sens 2022; 189:236-254.
|
[8] |
Guo Y, Mokany K, Ong C, Moghadam P, Ferrier S, Levick SR, et al.Plant species richness prediction from DESIS hyperspectral data: a comparison study on feature extraction procedures and regression models.ISPRS J Photogramm RemoteSens 2023; 196:120-133.
|
[9] |
Li N, Huo L, Zhang X.Using only the red-edge bands is sufficient to detect tree stress: a case study on the early detection of PWD using hyperspectral drone images.Comput Electron Agr 2024; 217:108665.
|
[10] |
Kruse FA, Boardman JW, Huntington JF.Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping.IEEE Trans Geosci Remote Sens 2003; 41(6):1388-1400.
|
[11] |
Chakraborty R, Rachdi I, Thiele S, Booysen R, Kirsch M, Lorenz S, et al.A spectral and spatial comparison of satellite-based hyperspectral data for geological mapping.Remote Sens 2024; 16(12):2089.
|
[12] |
Meerdink S, Roberts D, Hulley G, Gader P, Pisek J, Adamson K, et al.Plant species’ spectral emissivity and temperature using the hyperspectral thermal emission spectrometer (HyTES) sensor.Remote Sens Environ 2019; 224:421-435.
|
[13] |
Liu C, Xu R, Xie F, Jin J, Yuan L, Lv G, et al.New airborne thermal-infrared hyperspectral imager system: initial validation.IEEE J-STARS 2020; 13:4149-4165.
|
[14] |
Xing C, Liu C, Lin J, Tan W, Liu T.VOCs hyperspectral imaging: a new insight into evaluate emissions and the corresponding health risk from industries.J Hazard Mater 2024; 461:132573.
|
[15] |
Kruse FA.Comparative analysis of airborne visible/infrared imaging spectrometer (AVIRIS), and hyperspectral thermal emission spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping.In: Proceedings of SPIE, Algorithms Technol Multispectral Hyperspectral Ultraspectral Imag XXI; 2015 Apr 21–23; Baltimore, M D, US A. Bellingham: SPIE Digital Library; 2015. p. 480–92.
|
[16] |
Zhong Y, Hu X, Luo C, Wang X, Zhao J, Zhang L, et al.WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF.Remote Sens Environ 2020; 250:112012.
|
[17] |
Räsänen A, Virtanen T.Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes.Remote Sens Environ 2019; 230:111207.
|
[18] |
Shi L, Huang X, Zhong T, Taubenböck H.Mapping plastic greenhouses using spectral metrics derived from GaoFen-2 satellite data.IEEE J Sel Top Appl Earth Obs Remote Sens 2020; 13:49-59.
|
[19] |
Fayad I, Ciais P, Schwartz M, Wigneron JP, Baghdadi N, de A Truchis, et al.Hy-TeC: a hybrid vision transformer model for high-resolution and large-scale mapping of canopy height.Remote Sens Environ 2024; 302:113945.
|
[20] |
Dalponte M, Bruzzone L, Vescovo L, Gianelle D.The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas.Remote Sens Environ 2009; 113:2345-2355.
|
[21] |
Jia W, Pang Y, Tortini R.The influence of BRDF effects and representativeness of training data on tree species classification using multi-flightline airborne hyperspectral imagery.ISPRS J Photogramm Remote Sens 2024; 207:245-263.
|
[22] |
Jia J, Chen J, Zheng X, Wang Y, Guo S, Sun H, et al.Tradeoffs in the spatial and spectral resolution of airborne hyperspectral imaging systems: a crop identification case study.IEEE Trans Geosci Remote Sens 2022; 60:1-18.
|
[23] |
Schott JR, Gerace A, Woodcock CE, Wang S, Zhu Z, Wynne RH, et al.The impact of improved signal-to-noise ratios on algorithm performance: case studies for landsat class instruments.Remote Sens Environ 2016; 185:37-45.
|
[24] |
Kudela RM, Hooker SB, Guild LS, Houskeeper HF, Taylor N.Expanded signal to noise ratio estimates for validating next-generation satellite sensors in oceanic, coastal, and inland waters.Remote Sens 2024; 16:1238.
|
[25] |
Wocher M, Berger K, Verrelst J, Hank T.Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas.ISPRS J Photogramm Remote Sens 2022; 193:104-114.
|
[26] |
Loizzo R, Guarini R, Longo F, Scopa T, Formaro R, Facchinetti C, et al.Prisma: the Italian hyperspectral mission.In: Proceedings of the IEEE Geoscience and Remote Sensing Society, the International Geoscience and Remote Sensing Symposium; 2018 Jul 22–27; Valencia, Spain. New York City: IEE E; 2018. p. 175–8.
|
[27] |
Liu Y, Sun D, Hu X, Ye X, Li Y, Liu S, et al.The advanced hyperspectral imager: aboard China’s GaoFen-5 satellite.IEEE Geosc Rem Sen M 2019; 7:23-32.
|
[28] |
Green RO, Pavri BE, Chrien TG.On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina.IEEE Trans Geosci Remote Sens 2003; 41:1194-1203.
|
[29] |
Barnsley MJ, Settle JJ, Cutter MA, Lobb DR, Teston F.The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere.IEEE Trans Geosci Remote Sens 2004; 42:1512-1520.
|
[30] |
Frink K, Hayden L, LeCompte M.Compact reconnaissance imaging spectrometer for MARS (CRISM).In: Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARS S 2011); 2011 Jul 24–29; Vancouver, B C, Canada. New York City: IEE E; 2011. p. 4078–9.
|
[31] |
Mahalingam S, Srinivas P, Devi PK, Sita D, Das SK, Leela TS, et al.Reflectance based vicarious calibration of HySIS sensors and spectral stability study over pseudo-invariant sites.In: Proceedings of IEEE Recent Advances in Geoscience and Remote Sensing: Technologies, Standards and Applications (TENGARS S 2019); 2019 Oct 17–20; Kochi, India. New York City: IEE E; 2019. p. 132–6.
|
[32] |
Lee CM, Cable ML, Hook SJ, Green RO, Ustin SL, Mandl DJ, et al.An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities.Remote Sens Environ 2015; 167:6-19.
|
[33] |
Nieke J, Rast M.Towards the Copernicus hyperspectral imaging mission for the environment (CHIME).In: Proceedings of the IGARSS 2018*mdash;2018 IEEE International Geoscience and Remote Sensing Symposium; 2018 Jul 22–27; Valencia, Spain. New York City: IEE E; 2018. p. 157–9.
|
[34] |
Vane G, Goetz AFH, Wellman JB.Airborne imaging spectrometer: a new tool for remote sensing.IEEE Trans Geosci Remote Sens, GE-22 1984; 546-549.
|
[35] |
Carmon N, Ben-Dor E.Mapping asphaltic roads’ skid resistance using imaging spectroscopy.Remote Sens 2018; 10:430.
|
[36] |
Schaepman ME, Jehle M, Hueni A, D P’Odorico, Damm A, Weyermann J, et al.Advanced radiometry measurements and earth science applications with the airborne prism experiment (APEX).Remote Sens Environ 2015; 158:207-219.
|
[37] |
Muller A, Richter R, Habermeyer M, Dech S, Segl K, Kaufmann H, et al.Spectroradiometric requirements for the reflective module of the airborne spectrometer ARES.IEEE Geosci Remote Sens Lett 2005; 2:329-332.
|
[38] |
Gaddis LR, Soderblom LA, Kieffer HH, Becker KJ, Torson J, Mullins K, et al.Decomposition of AVIRIS spectra: extraction of surface-reflectance, atmospheric, and instrumental components.IEEE Trans Geosci Remote Sens 1996; 34:163-178.
|
[39] |
Edberg SJ, Evans DL, Graf JE, Hyon JJ, Rosen PA, Waliser DE, et al.Studying earth in the new millennium: NASA Jet Propulsion Laboratory’s contributions to earth science and applications space agencies.IEEE Geosc Rem Sen M 2016; 4:26-39.
|
[40] |
Green RO, Schaepman ME, Mouroulis P, Geier S, Shaw L, Hueini A, et al.Airborne visible/infrared imaging spectrometer 3 (AVIRIS-3).In: Proceedings of the 2022 IEEE Aerospace Conference (AER O); 2022 Mar 5–12; Big Sky, M T, US A. New York City: IEE E; 2022. p. 1–10.
|
[41] |
Plaza A, Martinez P, Plaza J, Perez R.Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations.IEEE Trans Geosci Remote Sens 2005; 43:466-479.
|
[42] |
Hörig B, Kühn F, Oschütz F, Lehmann F.HyMap hyperspectral remote sensing to detect hydrocarbons.Int J Remote Sens 2001; 22:1413-1422.
|
[43] |
Resmini RG, Kappus ME, Aldrich WS, Harsanyi JC, Anderson M.Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, USA.Int J Remote Sens 1997; 18:1553-1570.
|
[44] |
Jing C, Bokun Y, Runsheng W, Feng T, Yingjun Z, Dechang L, et al.Regional-scale mineral mapping using ASTER VNIR/SWIR data and validation of reflectance and mineral map products using airborne hyperspectral CASI/SASI data.Int J Appl Earth Obs Geoinformation 2014; 33:127-141.
|
[45] |
Sobrino JA, Jim JCénez-Muñoz, Zarco-Tejada PJ, Sepulcre-Cantó G, de E Miguel.Land surface temperature derived from airborne hyperspectral scanner thermal infrared data.Remote Sens Environ 2006; 102:99-115.
|
[46] |
Forzieri G, Moser G, Catani F.Assessment of hyperspectral MIVIS sensor capability for heterogeneous landscape classification.ISPRS J Photogramm Remote Sens 2012; 74:175-184.
|
[47] |
Du P, Tan K, Su H.Feature extraction for target identification and image classification of OMIS hyperspectral image.Min Sci Technol China 2009; 19:835-841.
|
[48] |
Rousset Rouvière L, Sisakoun I, Skauli T, Coudrain C, Ferrec Y, Fabre S, et al.Sysiphe, an airborne hyperspectral system from visible to thermal infrared.In: Proceedings of the 2016 IEEE Int Geosci Remote Sens Symp IGARSS; 2016 Jul 10–15; Beijing, China. New York City: IEE E; 2016. p. 1947–9.
|
[49] |
Zhang N, Zhang X, Yang G, Zhu C, Huo L, Feng H, et al.Assessment of defoliation during the Dndrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images.Remote Sens Environ 2018; 217:323-339.
|
[50] |
Pang Y, Räsänen A, Wolff F, Tahvanainen T, Männikkö M, Aurela M, et al.Comparing multispectral and hyperspectral UAV data for detecting peatland vegetation patterns.Int J Appl Earth Obs Geoinformation 2024; 132:104043.
|
[51] |
Zhuo W, Wu N, Shi R, Liu P, Zhang C, Fu X, et al.Aboveground biomass retrieval of wetland vegetation at the species level using UAV hyperspectral imagery and machine learning.Ecol Indic 2024; 166:112365.
|
[52] |
Putkiranta P, Räsänen A, Korpelainen P, Erlandsson R, Kolari THM, Pang Y, et al.The value of hyperspectral UAV imagery in characterizing tundra vegetation.Remote Sens Environ 2024; 308:114175.
|
[53] |
Li Y, Shen F, Hu L, Lang Z, Liu Q, Cai F, et al.A stare-down video-rate high-throughput hyperspectral imaging system and its applications in biological sample sensing.IEEE Sens J 2023; 23:23629-23637.
|
[54] |
Xi L, Si F, Jiang Y, Zhou H, Zhan K, Chang Z, et al.First high-resolution tropospheric NO2 observations from the Ultraviolet Visible Hyperspectral Imaging Spectrometer (UVHIS).Atmos Meas Tech 2021; 14(1):435-454.
|
[55] |
Zhang D, Yuan L, Wang S, Yu H, Zhang C, He D, et al.Wide swath and high resolution airborne hyperspectral imaging system and flight validation.Sensors 2019; 19(7):1667.
|
[56] |
Huang J, Wang Y, Zhang D, Yang L, Xu M, He D, et al.Design and demonstration of airborne imaging system for target detection based on area-array camera and push-broom hyperspectral imager.Infrared Phys Techn 2021; 116:103794.
|
[57] |
Yuan L, He Z, Lv G, Wang Y, Li C, Xie J, et al.Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer.Opt Express 2017; 25:22440.
|
[58] |
Yuan L, Xie J, He Z, Wang Y, Wang J.Optical design and evaluation of airborne prism-grating imaging spectrometer.Opt Express 2019; 27:17686.
|
[59] |
Prieto-Blanco X, Montero-Orille C, Couce B, de R la Fuente.Analytical design of an Offner imaging spectrometer.Opt Express 2006; 14:9156-9168.
|
[60] |
Xu W, Yuan L, Lin Y, He Z, Shu R, Wang J, et al.Analysis of background irradiation in thermal IR hyper-spectral imaging systems.In: Proceedings of SPIE, Infrared Technol Appl XXXVI; 2010 Apr 5–9; Orlando, F L, US A. Bellingham: SPIE Digital Library; 2010. p. 782–6.
|
[61] |
Liu E, Wu Y, Wang Y, Wen J, Lv G, Li C, et al.The development of a cryogenic integrated system with the working temperature of 100K.In: Proceedings Volume 9821, Tri-Technology Device Refrigeration (TTD R); 2016 May 17; Baltimore, M D, US A. Bellingham: SPIE Digital Library; 2016. p. 51–7.
|
[62] |
Hook SJ, Johnson WR, Abrams MJ.NASA’s hyperspectral thermal emission spectrometer (HyTES).Thermal infrared remote sensing, Springer, Berlin 2013; 93-115.
|
[63] |
Jia J, Wang Y, Cheng X, Yuan L, Zhao D, Ye Q, et al.Destriping algorithms based on statistics and spatial filtering for visible-to-thermal infrared pushbroom hyperspectral imagery.IEEE Trans Geosci Remote Sens 2019; 57:4077-4091.
|
[64] |
Jia J, Zheng X, Guo S, Wang Y, Chen J.Removing stripe noise based on improved statistics for hyperspectral images.SIEEE Geosci Remote Sens Lett 2020; 19:1-5.
|
[65] |
Liu H, Zhang D, Wang Y.Preflight spectral calibration of airborne shortwave infrared hyperspectral imager with water vapor absorption characteristics.Sensors 2019; 19:2259.
|
[66] |
Overbeck JA, Shea JJ.MTF measurement technique for GOES imager.In: Proceedings of the SPIE, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IX;1998 Aug 26; Orlando, F L, US A. Bellingham: SPIE Digital Library; 1998.3377:155–64.
|
[67] |
Zhu J, Zhao Z, Shen S, Ding S, Shen W.Analysis on NETD of thermal infrared imaging spectrometer.In: Urbach HP, Yu Q, editors. In: Proceedings of the 5th International Symposium of Space Optical Instruments and Applications; 2018 Sep 5–7; Beijing, China. Berlin: Springer International Publishing; 2020. p. 1–9.
|
[68] |
Chance K, Kurucz RL.An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared.J Quant Spectrosc Ra 2010; 111:1289-1295.
|
[69] |
Liu H, Wang Y, Zhang D.On-board spectral calibration algorithm for an airborne hyperspectral imager and elimination of the effect of the atmospheric underlying surface.Appl Optic 2019; 58:8765-8775.
|
[70] |
Liu H, Wang Y, Zhang D, Zhou W, Xie W.Atmospheric absorption ratio algorithm for airborne short-wave infrared hyperspectral imagery spectral calibration based on carbon dioxide and water vapor.Infrared Phys Techn 2020; 111:103514.
|
[71] |
Bethel J, Lee C, Landgrebe DA.Geometric registration and classification of hyperspectral airborne pushbroom data.ISPRS Archives 2000; 33:183-190.
|
[72] |
Dong J, Duan Y, Zhou Q, Zhao X.ADHHI airborne hyperspectral imager: camera structure and geometric correction.In: Proceedings of the SPIE, Image Signal Process Remote Sens XXVIII; 2022 Oct 26; Berlin, Germany. Bellingham: SPIE Digital Library; 2022. p. 275–83.
|
[73] |
Barsi JA, Schott JR, Hook SJ, Raqueno NG, Markham BL, Radocinski RG, et al.Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration.Remote Sens 2014; 6:11607-11626.
|
[74] |
Kruse FA.Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, Colorado.In: Proceedings of the 13th JPL Airborne Geosci; 2004 Mar 31–Apr 2; Pasadena, C A, US A. Pasadena: Jet Propuls Lab Publication; 2004. p. 1–10.
|
[75] |
Li J, Pei Y, Zhao S, Xiao R, Sang X, Zhang C, et al.A review of remote sensing for environmental monitoring in China.Remote Sens 2020; 12:1130.
|
[76] |
Tellman B, Magliocca NR, Turner BL II, Verburg PH.Understanding the role of illicit transactions in land-change dynamics.Nat Sustain 2020; 3:175-181.
|
[77] |
Zhao F, Li S, Zhang J, Liu H.Convolution transformer fusion splicing network for hyperspectral image classification.IEEE Geosci Remote Sens Lett 2023; 20:1-5.
|
[78] |
Li N, Wang Z, Cheikh FA, Ullah M.S3AM: a spectral-similarity-based spatial attention module for hyperspectral image classification.IEEE J Sel Top Appl Earth Obs Remote Sens 2022; 15:5984-5998.
|
[79] |
Wu X, Feng J, Shang R, Zhang X, Jiao L.CMNet: Classification-oriented multi-task network for hyperspectral pansharpening.Knowl-Based Syst 2022; 256:109878.
|
[80] |
Yang X, Ye Y, Li X, Lau RYK, Zhang X, Huang X, et al.Hyperspectral image classification with deep learning models.IEEE Trans Geosci Remote Sens 2018; 56:5408-5423.
|
[81] |
Jia S, Jiang S, Lin Z, Xu M, Sun W, Huang Q, et al.A semisupervised Siamese network for hyperspectral image classification.IEEE Trans Geosci Remote Sens 2022; 60:1-17.
|
[82] |
He D, Shi Q, Liu X, Zhong Y, Liu X.Spectral–spatial fusion sub-pixel mapping based on deep neural network.IEEE Geosci Remote Sens Lett 2022; 19:1-5.
|
[83] |
Li S, Tian Y, Xia H, Liu Q.Unmixing-based PAN-guided fusion network for hyperspectral imagery.IEEE Trans Geosci Remote Sensing 2022; 60:1-17.
|
[84] |
Li S, Tian Y, Wang C, Wu H, Zheng S.Hyperspectral image super-resolution network based on cross-scale nonlocal attention.IEEE Trans Geosci Remote Sens 2023; 61:1-15.
|
[85] |
He J, Li J, Yuan Q, Shen H, Zhang L.Spectral response function-guided deep optimization-driven network for spectral super-resolution.IEEE Trans Neural Netw Learn Syst 2022; 33:4213-4227.
|
[86] |
He J, Yuan Q, Li J, Zhang L.PoNet: a universal physical optimization-based spectral super-resolution network for arbitrary multispectral images.Inform Fusion 2022; 80:205-225.
|
[87] |
Graña M, Veganzons MA, Ayerdi B.Hyperspectral remote sensing scenes [Internet].Gipuzkoa: Acerca de Grupo de Inteligencia Computacional (GIC); undated [cited 2024 Jun 26]. Available from: https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University.
|
[88] |
Li C, Cai R, Yu J.An attention-based 3D convolutional autoencoder for few-shot hyperspectral unmixing and classification.Remote Sens 2023; 15:451.
|
[89] |
Lawrence RL, Wood SD, Sheley RL.Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest).Remote Sens Environ 2006; 100:356-362.
|
[90] |
Ben A Hamida, Benoit A, Lambert P, Ben AC.3-D deep learning approach for remote sensing image classification.IEEE Trans Geosci Remote Sens 2018; 56:4420-4434.
|
[91] |
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al.An image is worth 16 × 16 words: transformers for image recognition at scale.2020. arXiv: 2010.11929.
|
[92] |
Heo B, Yun S, Han D, Chun S, Choe J, Oh SJ, et al.Rethinking spatial dimensions of vision transformers.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICC V 2021); 2021 Oct 10–17; Montreal, Q C, Canada. New York City: IEE E; 2021. p. 11936–45.
|
[93] |
Liu C, Xing C, Hu Q, Li Q, Liu H, Hong Q, et al.Ground-based hyperspectral stereoscopic remote sensing network: a promising strategy to learn coordinated control of O3 and PM2.5 over China.Engineering 2022; 19(12):71-83.
|
[94] |
Liu C, Sun Y, Shan C, Wang W, Notholt J, Palm M, et al.Long-term observations of atmospheric constituents at the first ground-based high-resolution Fourier-transform spectrometry observation station in China.Engineering 2023; 22:201-214.
|
[95] |
Rozanov VV, Rozanov AV, Kokhanovsky AA, Burrows JP.Radiative transfer through terrestrial atmosphere and ocean: software package SCIATRAN.J Quant Spectrosc Ra 2014; 133:13-71.
|
[96] |
G Målfalk, Olofsson G, Crill P, Bastviken D.Making methane visible.Nat Clim Change 2016; 6:426-430.
|
[97] |
Cai M, Brown ET.Challenges in the mining and utilization of deep mineral resources.Engineering 2017; 3(4):432-433.
|
[98] |
Ding J, Yang C, Chai T.Recent progress on data-based optimization for mineral processing plants.Engineering 2017; 3(2):183-187.
|
[99] |
Vaughan RG, Calvin WM, Taranik JV.SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping.Remote Sens Environ 2003; 85:48-63.
|
[100] |
Sheng J, Tang W.Spatiotemporal variation patterns of water pollution drivers: the case of China’s south–north water transfer project.Sci Total Environ 2021; 761:143190.
|
[101] |
Wu Z, Tao B, Mao Z, Huang H.Bathymetry retrieval algorithm based on hyperspectral features of pure water absorption from 570 to 600 nm.IEEE Trans Geosci Remote Sens 2023; 61:1-19.
|
[102] |
Niu C, Tan K, Wang X, Du P, Pan C.A semi-analytical approach for estimating inland water inherent optical properties and chlorophyll a using airborne hyperspectral imagery.Int J Appl Earth Obs Geoinformation 2024; 128:103774.
|
[103] |
Xu Q, Liu S, Ye F, Zhang Z, Zhang C.Application of CASI/SASI and fieldspec4 hyperspectral data in exploration of the Baiyanghe uranium deposit, Hebukesaier, Xinjiang, NW China.Int J Remote Sens 2018; 39:453-469.
|
[104] |
Montero SIC, Brimhall GH, Alpers CN, Swayze GA.Characterization of waste rock associated with acid drainage at the Penn Mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping.Chem Geol 2005; 215:453-472.
|
[105] |
Kopa Včková, Koucká L.Integration of absorption feature information from visible to longwave infrared spectral ranges for mineral mapping.Remote Sens 2017; 9:1006.
|
[106] |
Wen M, Wang Y, Yao Y, Yuan L, Zhou S, Wang J, et al.Design and performance of curved prism-based mid-wave infrared hyperspectral imager.Infrared Phys Techn 2018; 95:5-11.
|
[107] |
Schneider J, Grosse G, Wagner D.Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions.Remote Sens Environ 2009; 113(2):380-391.
|
[108] |
Bartsch A, Höfler A, Kroisleitner C, Trofaier AM.Land cover mapping in northern high latitude permafrost regions with satellite data: achievements and remaining challenges.Remote Sens 2016; 8(12):979.
|
[109] |
Hong D, Zhang B, Li X, Li Y, Li C, Yao J, et al.SpectralGPT: spectral remote sensing foundation model.IEEE Trans Pattern Anal Mach Intell 2024; 46(8):5227-5244.
|
[110] |
Jia J, Zheng X, Wang Y, Chen Y, Karjalainen M, Dong S, et al.The effect of artificial intelligence evolving on hyperspectral imagery with different signal-to-noise ratio, spectral and spatial resolutions.Remote Sens Environ 2024; 311:114291.
|