基于双卸粮模式的水稻协同收获转运策略及系统研究

丁凡a,c, 罗锡文a,b,c, 张智刚a,b,c, 胡炼a,b,c, 吴欣洛a,c, 鲍开元a,c, 张嘉锐a,c, 苑炳轩a,c, 张闻宇a,b,c,*

工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 220-233.

PDF(4639 KB)
PDF(4639 KB)
工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 220-233. DOI: 10.1016/j.eng.2024.11.006
Article

 基于双卸粮模式的水稻协同收获转运策略及系统研究

  • 丁凡a,c, 罗锡文a,b,c, 张智刚a,b,c, 胡炼a,b,c, 吴欣洛a,c, 鲍开元a,c, 张嘉锐a,c, 苑炳轩a,c, 张闻宇a,b,c,*
作者信息 +

Dual-Unloading Mode Autonomous Operation Strategy and Cotransporter System for Rice Harvester and Transporter

  • Fan Dinga,c, Xiwen Luoa,b,c, Zhigang Zhanga,b,c, Lian Hua,b,c, Xinluo Wua,c, Kaiyuan Baoa,c, Jiarui Zhanga,c, Bingxuan Yuana,c, Wenyu Zhanga,b,c
Author information +
History +

摘要

 为实现水稻无人农场、提高作业效率,本研究开发了协同收获-转运系统,使用履带式收获机和运粮车进行全自动收获、卸粮和转运。在此基础上,本研究提出了两种卸粮-转运模式——“收获机等待卸粮(Harvester Waiting for Unloading, HWU)”和“运粮车跟随卸粮(Transporter Following for Unloading, TFU)”,并确定了收获-卸粮-转运(Harvesting–Unloading–Transportation, HUT)策略;通过分解协同收获作业主要阶段、设计模块状态机(Module-State Machines, MSM)、构建状态转换链,采用有限状态自动机(Finite-State Machine, FSM)的概念和方法,设计了适合嵌入式导航控制器的 HUT 协同作业逻辑框架,解决了HUT 协同作业中多阶段、非顺序和流程复杂的问题。本研究采用仿真和田间收获试验结合的方法评估所提出策略和系统的适用性。试验结果表明:HUT 协同作业策略能够将路径规划、路径跟踪控制、机间通信、协同作业控制和机具控制有效地结合在一起,可以实现全流程自主收获、卸粮和转运,田间试验的收获效率达到了0.42 hm2∙h−1。本研究可为协同收获提供理论技术支持,并为无人农场的收获环节提供解决方案。

Abstract

To achieve an unmanned rice farm, in this study, a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting, unloading, and transportation. Additionally, two unloading and transportation modes—harvester waiting for unloading (HWU) and transporter following for unloading (TFU)--were proposed, and a harvesting-unloading-transportation (HUT) strategy was defined. By breaking down the main stages of the collaborative operation, designing Module-state machines (MSMs), and constructing state-transition chains, a HUT collaborative operation logic framework suitable for the embedded navigation controller was designed using the concept and method of the finite-state machine (FSM). This method addresses the multiple-stage, nonsequential, and complex processes in HUT collaborative operations. Simulations and field-harvesting experiments were performed to evaluate the applicability of this proposed strategy and system. The experimental results showed that the HUT collaborative operation strategy effectively integrated path planning, path-tracking control, inter-vehicle communication, collaborative operation control, and implementation control. The cotransporter system completed the entire process of harvesting, unloading, and transportation. The field-harvesting experiment revealed that a harvest efficiency of 0.42 hm2∙h−1 was achieved. This study can provide insight into collaborative harvesting and solutions for the harvesting process of unmanned farms.

关键词

农业机械 / 收获-卸粮-转运策略 / 协同收获-转运系统 / 无人农场 / 有限状态自动机

Keywords

Agricultural machinery / Harvesting-unloading-transportation strategy / Cotransporter system / Unmanned farm / Finite-state machine (FSM)

引用本文

导出引用
丁凡,罗锡文,张智刚,胡炼,吴欣洛,鲍开元,张嘉锐,苑炳轩,张闻宇.  基于双卸粮模式的水稻协同收获转运策略及系统研究. Engineering. 2025, 48(5): 220-233 https://doi.org/10.1016/j.eng.2024.11.006

参考文献

[1]
D. Li, Z. Li. System analysis and development prospect of unmanned farming. Trans Chin Soc Agric Mach, 51 (7) ( 2020), pp. 1-12(Chinese).
[2]
X. Luo, J. Liao, L. Hu, Z. Zhou, Z. Zhang, Y. Zang, et al.. Research progress of intelligent agricultural machinery and practice of unmanned farm in China. J South China Agric Univ, 42 (6) ( 2021), pp. 8-17(Chinese).
[3]
Z. Zhang, X. Luo, Z. Zhao, P. Huang. Trajectory tracking control method based on kalman filter and pure pursuit model for agricultural vehicle. Trans Chin Soc Agric Mach, 40 (S1) ( 2009), pp. 6-12(Chinese).
[4]
H. Chou, F. Khorsandi, S. Vougioukas, F. Fathallah. Developing and evaluating an autonomous agricultural all-terrain vehicle for field experimental rollover simulations. Comput Electron Agric, 194 ( 2022), Article 106735
[5]
H. Sun, D. Slaughter, M. Ruiz, C. Gliever, S. Upadhyaya, R. Smith. Rtk gps mapping of transplanted row crops. Comput Electron Agric, 71 (1) ( 2010), pp. 32-37
[6]
Y. Ding, Z. Xia, J. Peng, Z. Hu. Design and experiment of the single-neuron PID navigation controller for a combine harvester. Trans Chin Soc Agric Eng, 36 (7) ( 2020), pp. 34-42(Chinese).
[7]
J. Xue, L. Zhang, T. Grift. Variable field-of-view machine vision based row guidance of an agricultural robot. Comput Electron Agric, 84 ( 2012), pp. 85-91
[8]
Y. Zhang, Y. Li, X. Liu, J. Tao, C. Liu, R. Li. Fuzzy adaptive control method for autonomous rice seeder. Trans Chin Soc Agric Mach, 49 (10) ( 2018), pp. 30-37(Chinese).
[9]
X. Niu, G. Gao, Z. Bao, H. Zhou. Path tracking of mobile robots for greenhouse spraying controlled by sliding mode variable structure. Trans Chin Soc Agric Eng, 29 (02) ( 2013), pp. 9-16(Chinese).
[10]
G. Xu, M. Chen, X. He, H. Pang, H. Miao, P. Cui, et al.. Path following control of tractor with an electro-hydraulic coupling steering system: layered multi-loop robust control architecture. Biosyst Eng, 209 ( 2021), pp. 282-299
[11]
J. He, L. Hu, P. Wang, Y. Liu, Z. Man, T. Tu, et al.. Path tracking control method and performance test based on agricultural machinery pose correction. Comput Electron Agric, 200 ( 2022), Article 107185
[12]
R. Chi, Z. Xiong, L. Jiang, Y. Ma, X. Huang, X. Zhu. Path tracking control algorithm of transplanter based on model prediction. Trans Chin Soc Agric Mach, 53 (11) ( 2022), pp. 22-30(Chinese).
[13]
X. Zhang, M. Geimer, P. Noack, L. Grandl. A semi-autonomous tractor in an intelligent master-slave vehicle system. Intell Serv Robot, 3 (4) ( 2010), pp. 263-269
[14]
S. Li, R. Cao, S. Wei, Y. Ji, M. Zhang, H. Li. Development of multivehicle cooperative navigation communication system based on TD-LTE. Trans Chin Soc Agric Mach, 48 (S1) ( 2017), pp. 45-51(Chinese).
[15]
C. Zhang, N. Noguchi, L. Yang. Leader-follower system using two robot tractors to improve work efficiency. Comput Electron Agric, 121 ( 2016), pp. 269-281
[16]
J. Chen, S. Fu, Z. Guan, F. Zhu, L. Zhu, H. Xia, et al.. Communication method for combine harvester group using Lora technology. Trans Chin Soc Agric Eng, 38 (16) ( 2022), pp. 81-89(Chinese).
[17]
J. Yao, G. Teng, L. Huo, Y. Yuan, F. Zhang. Optimization of cooperative operation path for multiple combine harvesters without conflict. Trans Chin Soc Agric Eng, 35 (17) ( 2019), pp. 12-18(Chinese).
[18]
Z. Zhai, X. Wang, L. Wang, Z. Zhu, Y. Du, E. Mao. Collaborative path planning for autonomous agricultural machinery of master slave cooperation. Trans Chin Soc Agric Mach, 52 (S1) ( 2021), pp. 542-547(Chinese).
[19]
F. Zhang, X. Luo, Z. Zhang, J. He, W. Zhang. Agricultural machinery scheduling optimization method based on improved multi-parents genetic algorithm. Trans Chin Soc Agric Eng, 37 (9) ( 2021), pp. 192-198(Chinese).
[20]
N. Wang, X. Yang, T. Wang, J. Xiao, M. Zhang, H. Wang, et al.. Collaborative path planning and task allocation for multiple agricultural machines. Comput Electron Agric, 213 ( 2023), Article 108218
[21]
N. Noguchi, J. Will, J. Reid, Q. Zhang. Development of a master-slave robot system for farm operations. Comput Electron Agric, 44 (1) ( 2004), pp. 1-19
[22]
X. Bai, Z. Wang, J. Hu, L. Gao, F. Xiong. Harvester group corporative navigation method based on leader-follower structure. Trans Chin Soc Agric Mach, 48 (7) ( 2017), pp. 14-21(Chinese).
[23]
S. Li, H. Xu, Y. Ji, R. Cao, M. Zhang, H. Li. Development of a following agricultural machinery automatic navigation system. Comput Electron Agric, 158 ( 2019), pp. 335-344
[24]
W. Zhang, Z. Zhang, X. Luo, J. He, L. Hu, B. Yue. Position-velocity coupling control method and experiments for longitudinal relative position of harvester and grain truck. Trans Chin Soc Agric Eng, 37 (9) ( 2021), pp. 1-11(Chinese).
[25]
F. Ding, W. Zhang, X. Luo, L. Hu, Z. Zhang, M. Wang, et al.. Gain self-adjusting single neuron pid control method and experiments for longitudinal relative position of harvester and transport vehicle. Comput Electron Agric, 213 ( 2023), Article 108215
[26]
H. Cho, G.D. Hachtel, E. Macii, B. Plessier, F. Somenzi. Algorithms for approximate fsm traversal based on state space decomposition. IEEE Trans Comput Aided Des Integrated Circ Syst, 15 (12) ( 1996), pp. 1465-1478
[27]
J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, et al.. A perception-driven autonomous urban vehicle. J Field Robot, 25 (10) ( 2008), pp. 727-774
[28]
A. Talebpour, H. Mahmassani, S. Hamdar. Modeling lane-changing behavior in a connected environment: a game theory approach. Transp Res Procedia, 7 ( 2015), pp. 420-440
[29]
L. Xiong, T. Jia, J. Chen, X. Xing, B. Li. Hazard identification method for safety of the intended functionality based on finite state machine. J Tongji Univ, 51 (4) ( 2023), pp. 616-622(Chinese).
[30]
L. Yang, X. Tang, S. Wu, L. Wen, W. Yang, C. Wu. Local path planning for autonomous agricultural machinery on farm road. Trans Chin Soc Agric Eng, 40 (01) ( 2024), pp. 27-36(Chinese).
[31]
K. Fue, W. Porter, E. Barnes, C. Li, G. Rains. Center-articulated hydrostatic cotton harvesting rover using visual-servoing control and a finite state machine. Electronics, 9 (8) ( 2020), p. 1226
[32]
J. He, X. Luo, Z. Zhang, P. Wang, J. He, B. Yue, et al.. Positioning correction method for rice transplanters based on the attitude of the implement. Comput Electron Agric, 176 ( 2020), Article 105598
[33]
H. Wang, G. Wang, X. Luo, Z. Zhang, Y. Gao, J. He, et al.. Path tracking control method of agricultural machine navigation based on aiming pursuit model. Trans Chin Soc Agric Eng, 35 (4) ( 2019), pp. 11-19(Chinese).
[34]
F. Ding, W. Zhang, X. Luo, Z. Zhang, M. Wang, H. Li, et al.. Design and experiment for inter-vehicle communication based on dead-reckoning and delay compensation in a cooperative harvester and transport system. Agriculture, 12 (12) ( 2022), p. 2052
[35]
W. Zhang, L. Hu, F. Ding, X. Luo, Z. Zhang, L. Hu, et al.. Parking precise alignment control and cotransporter system for rice harvester and transporter. Comput Electron Agric, 215 ( 2023), Article 108443
[36]
Y. Tian, S. Bhattacharya. Smart autonomous grain carts for harvesting-on-demand, IEEE, Vancouver, BC, Canada. Piscataway ( 2017), pp. 5168-5173
[37]
P. He, J. Li. The two-echelon multi-trip vehicle routing problem with dynamic satellites for crop harvesting and transportation. Appl Soft Comput, 77 ( 2019), pp. 387-398
[38]
W. Zhang, Z. Zhang, F. Zhang, F. Ding, L. Hu, X. Luo. Cooperative autonomous operation strategy and experiment of the rice harvester together with a rice-transporting vehicle. Trans Chin Soc Agric Eng, 38 (15) ( 2022), pp. 1-9(Chinese).
[39]
S. Li, M. Zhang, N. Wang, R. Cao, Z. Zhang, Y. Ji, et al.. Intelligent scheduling method for multi-machine cooperative operation based on nsga-iii and improved ant colony algorithm. Comput Electron Agric, 204 ( 2023), Article 107532
基金
 
PDF(4639 KB)

Accesses

Citation

Detail

段落导航
相关文章

/