面向高分辨率非视域成像的矢量数智光学

郭迎辉, 雷云松, 蒲明博, 张飞, 张其, 李晓银, 张润哲, 赵郅斌, 周芮, 范玉龙, 罗先刚

工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 70-78.

PDF(2455 KB)
PDF(2455 KB)
工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 70-78. DOI: 10.1016/j.eng.2024.11.013
研究论文
Article

面向高分辨率非视域成像的矢量数智光学

作者信息 +

Vectorial Digitelligent Optics for High-Resolution Non-Line-of-Sight Imaging

Author information +
History +

Abstract

Object imaging beyond the direct line of sight is significant for applications in robotic vision, remote sensing, autonomous driving, and many other areas. Reconstruction of a non-line-of-sight (NLOS) screen is a complex inverse problem that comes with ultrafast time-resolved imager requirements and substantial computational demands to extract information from the multi-bounce scattered light. Consequently, the echo signal always suffers from serious deterioration in both intensity and shape, leading to limited resolution and image contrast. Here, we propose a concept of vectorial digitelligent optics for high-resolution NLOS imaging to cancel the wall’s scattering and refocus the light onto hidden targets for enhanced echo. In this approach, the polarization and wavefront of the laser spot are intelligently optimized via a feedback algorithm to form a near-perfect focusing pattern through a random scattering wall. By raster scanning the focusing spot across the object’s surface within the optical-memory-effect range of the wall, we obtain nearly diffraction-limited NLOS imaging with an enhanced signal-to-noise ratio. Our experimental results demonstrate a resolution of 0.40 mm at a distance of 0.35 m, reaching the diffraction limit of the system. Furthermore, we demonstrate that the proposed method is feasible for various complex NLOS scenarios. Our methods may open an avenue for active imaging, communication, and laser wireless power transfer.

Keywords

Non-line-of-sight imaging / Vectorial digitelligent optics / Spatial light modulator / Digital optics / Wavefront shaping / Metasurface

引用本文

导出引用
郭迎辉, 雷云松, 蒲明博. 面向高分辨率非视域成像的矢量数智光学. Engineering. 2025, 45(2): 70-78 https://doi.org/10.1016/j.eng.2024.11.013

参考文献

[1]
Edgar MP, Gibson GM, Padgett MJ.Principles and prospects for single-pixel imaging.Nat Photonics 2019; 13(1):13-20.
[2]
Tseng E, Colburn S, Whitehead J, Huang L, Baek SH, Majumdar A, et al.Neural nano-optics for high-quality thin lens imaging.Nat Commun 2021; 12:6493.
[3]
Yang Y, Forbes A, Cao L.A review of liquid crystal spatial light modulators: devices and applications.Opto Electron Sci 2023; 2(8):230026.
[4]
Luo X.Multiscale optical field manipulation via planar digital optics.ACS Photonics 2023; 10(7):2116-2127.
[5]
Luo X.Metasurface waves in digital optics.J Phys Photonics 2020; 2(4):041003.
[6]
Luo X.Subwavelength artificial structures: opening a new era for engineering optics.Adv Mater 2019; 31(4):1804680.
[7]
Zheng S, Liao M, Wang F, He W, Peng X, Situ G.Non-line-of-sight imaging under white-light illumination: a two-step deep learning approach.Opt Express 2021; 29(24):40091-40105.
[8]
Zhu S, Sua YM, Bu T, Huang YP.Compressive non-line-of-sight imaging with deep learning.Phys Rev Appl 2023; 19(3):034090.
[9]
Wu C, Liu J, Huang X, Li ZP, Yu C, Ye JT, et al.Non–line-of-sight imaging over 1.43 km.Proc Natl Acad Sci USA 2021; 118(10):e2024468118.
[10]
Huang X, Ye R, Li W, Zeng JW, Lu YC, Hu H, et al.Non-line-of-sight imaging and vibrometry using a comb-calibrated coherent sensor.Phys Rev Lett 2024; 132(23):233802.
[11]
Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi MG, Raskar R.Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging.Nat Commun 2012; 3:745.
[12]
O M’Toole, Lindell DB, Wetzstein G.Confocal non-line-of-sight imaging based on the light-cone transform.Nature 2018; 555(7696):338-341.
[13]
Xu Z, Bi S, Sunkavalli K, Hadap S, Su H, Ramamoorthi R.Deep view synthesis from sparse photometric images.ACM Trans Graph 2019; 38(4):76.
[14]
Liu X, Guill Ién, La Manna M, Nam JH, Reza SA, Huu Le T, et al.Non-line-of-sight imaging using phasor-field virtual wave optics.Nature 2019; 572(7771):620-623.
[15]
Starshynov I, Ghafur O, Fitches J, Faccio D.Coherent control of light for non-line-of-sight imaging.Phys Rev Appl 2019; 12(6):064045.
[16]
Cao R, de Goumoens F, Blochet B, Xu J, Yang C.High-resolution non-line-of-sight imaging employing active focusing.Nat Photonics 2022; 16(6):462-468.
[17]
Wang B, Zheng MY, Han JJ, Huang X, Xie XP, Xu F, et al.Non-line-of-sight imaging with picosecond temporal resolution.Phys Rev Lett 2021; 127(5):053602.
[18]
De Aguiar HB, Gigan S, Brasselet S.Polarization recovery through scattering media.Sci Adv 2017; 3(9):e1600743.
[19]
He C, Antonello J, Booth MJ.Vectorial adaptive optics.eLight 2023; 3:23.
[20]
Gong L, Zhao Q, Zhang H, Hu XY, Huang K, Yang JM, et al.Optical orbital-angular-momentum-multiplexed data transmission under high scattering.Light Sci Appl 2019; 8:27.
[21]
Wang Z, Li X, Pu M, Chen L, Zhang F, Zhang Q, et al.Vectorial-optics-enabled multi-view non-line-of-sight imaging with high signal-to-noise ratio.Laser Photonics Rev 2024; 18(6):2300909.
[22]
Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, et al.Hybrid-order Poincaré sphere.Phys Rev A 2015; 91(2):023801.
[23]
Shvedov V, Davoyan AR, Hnatovsky C, Engheta N, Krolikowski W.A long-range polarization-controlled optical tractor beam.Nat Photonics 2014; 8(11):846-850.
[24]
Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV.Spin–orbit interactions of light.Nat Photonics 2015; 9(12):796-808.
[25]
Kagalwala KH, Di Giuseppe G, Abouraddy AF, Saleh BE.Bell’s measure in classical optical coherence.Nat Photonics 2013; 7(1):72-78.
[26]
Wang J.Advances in communications using optical vortices.Photon Res 2016; 4(5):B14-B28.
[27]
Nape I, Singh K, Klug A, Buono W, Rosales-Guzman C, McWilliam A, et al.Revealing the invariance of vectorial structured light in complex media.Nat Photonics 2022; 16(7):538-546.
[28]
Dorrah AH, Capasso F.Tunable structured light with flat optics.Science 2022; 376(6591):eabi6860.
[29]
Gigli C, Leo G.All-dielectric χ(2) metasurfaces: recent progress.Opto Electron Adv 2022; 5(7):210093.
[30]
Wang JT, Tonkaev P, Koshelev K, Lai F, Kruk S, Song Q, et al.Resonantly enhanced second-and third-harmonic generation in dielectric nonlinear metasurfaces.Opto Electron Adv 2024; 7(5):230186.
[31]
Gigli C, Marino G, Artioli A, Rocco D, De Angelis C, Claudon J, et al.Tensorial phase control in nonlinear meta-optics.Optica 2021; 8(2):269-276.
[32]
Camacho-Morales MDR, Rocco D, Xu L, Gili VF, Dimitrov N, Stoyanov L, et al.Infrared upconversion imaging in nonlinear metasurfaces.Adv Photonics 2021; 3(3):036002.
[33]
Jang M, Horie Y, Shibukawa A, Brake J, Liu Y, Kamali SM, et al.Wavefront shaping with disorder-engineered metasurfaces.Nat Photonics 2018; 12(2):84-90.
[34]
Shen Z, Zhao F, Jin C, Wang S, Cao L, Yang Y.Monocular metasurface camera for passive single-shot 4D imaging.Nat Commun 2023; 14:1035.
[35]
Li L, Wang S, Zhao F, Zhang Y, Wen S, Chai H, et al.Single-shot deterministic complex amplitude imaging with a single-layer metalens.Sci Adv 2024; 10(1):eadl0501.
[36]
Zhang F, Guo Y, Pu M, Chen L, Xu M, Liao M, et al.Meta-optics empowered vector visual cryptography for high security and rapid decryption.Nat Commun 2023; 14:1946.
[37]
Dorrah AH, Rubin NA, Zaidi A, Tamagnone M, Capasso F.Metasurface optics for on-demand polarization transformations along the optical path.Nat Photonics 2021; 15(4):287-296.
[38]
Piccardo M, de Oliveira M, Toma A, Aglieri V, Forbes A, Ambrosio A.Vortex laser arrays with topological charge control and self-healing of defects.Nat Photonics 2022; 16(5):359-365.
[39]
Gao Y, Chen Z, Ding J, Wang HT.Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams.Appl Opt 2019; 58(24):6591-6596.
[40]
Liu S, Qi S, Zhang Y, Li P, Wu D, Han L, et al.Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude.Photon Res 2018; 6(4):228-233.
[41]
Moreno I, Davis JA, Cottrell DM, Donoso R.Encoding high-order cylindrically polarized light beams.Appl Opt 2014; 53(24):5493-5501.
[42]
Liu S, Li P, Peng T, Zhao J.Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer.Opt Express 2012; 20(19):21715-21721.
[43]
Chen S, Zhou X, Liu Y, Ling X, Luo H, Wen S.Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere.Opt Lett 2014; 39(18):5274-5276.
[44]
Li P, Zhang Y, Liu S, Ma C, Han L, Cheng H, et al.Generation of perfect vectorial vortex beams.Opt Lett 2016; 41(10):2205-2208.
[45]
Zhang Y, Li P, Ma C, Liu S, Cheng H, Han L, et al.Efficient generation of vector beams by calibrating the phase response of a spatial light modulator.Appl Opt 2017; 56(17):4956-4960.
[46]
Becker W, Bergmann A, Biscotti GL, Rueck A.Advanced time-correlated single photon counting techniques for spectroscopy and imaging in biomedical systems. In: Proceedings of Lasers and Applications in Science and Engineering; 2004 Jan 25; San Jose, CA, USA. SPIE; p. 104–12.
[47]
Liang J, Ye Y, Gu F, Zhang J, Zhao J, Song Z.A polarized structured light method for the 3D measurement of high-reflective surfaces.Photonics 2023; 10(6):695.
[48]
Huang X, Wu C, Xu X, Wang B, Zhang S, Shen C, et al.Polarization structured light 3D depth image sensor for scenes with reflective surfaces.Nat Commun 2023; 14:6855.
[49]
Guo Y, Zhang S, Pu M, He Q, Jin J, Xu M, et al.Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation.Light Sci Appl 2021; 10:63.
[50]
Luo X, Pu M, Zhang F, Xu M, Guo Y, Li X, et al.Vector optical field manipulation via structural functional materials: tutorial.J Appl Phys 2022; 131(18):181101.
[51]
Valagiannopoulos C, Sarsen A, Al Aù.Angular memory of photonic metasurfaces.IEEE Trans Antennas Propag 2021; 69(11):7720-7728.
[52]
Wang X, Wang H, Wang J, Liu X, Hao H, Tan YS, et al.Single-shot isotropic differential interference contrast microscopy.Nat Commun 2023; 14:2063.
[53]
Wang Z, Hu G, Wang X, Ding X, Zhang K, Li H, et al.Single-layer spatial analog meta-processor for imaging processing.Nat Commun 2022; 13:2188.
[54]
Metzler CA, Heide F, Rangarajan P, Balaji MM, Viswanath A, Veeraraghavan A, et al.Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging.Optica 2020; 7(1):63-71.
[55]
Liu X, Wang J, Li Z, Shi Z, Fu X, Qiu L.Non-line-of-sight reconstruction with signal–object collaborative regularization.Light Sci Appl 2021; 10:198.
[56]
Willomitzer F, Rangarajan PV, Li F, Balaji MM, Christensen MP, Cossairt O.Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography.Nat Commun 2021; 12:6647.
[57]
Huang L, Han Z, Wirth-Singh A, Saragadam V, Mukherjee S, Fröch JE, et al.Broadband thermal imaging using meta-optics.Nat Commun 2024; 15:1662.
PDF(2455 KB)

Accesses

Citation

Detail

段落导航
相关文章

/