受生物表面工程启发结合印迹后修饰和双共价受体策略精准构筑辨识吸附剂并选择性分离5′-单磷酸腺

王盼, 程涛, 韦庄鑫, 刘璐, 王越, 田小花, 潘建明

工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 143-154.

PDF(2295 KB)
PDF(2295 KB)
工程(英文) ›› 2025, Vol. 45 ›› Issue (2) : 143-154. DOI: 10.1016/j.eng.2024.11.015
研究论文
Article

受生物表面工程启发结合印迹后修饰和双共价受体策略精准构筑辨识吸附剂并选择性分离5′-单磷酸腺

作者信息 +

Bioinspired Surface Engineering with Dual Covalent Receptors Incorporated via Precise Post-Imprinting Modification to Enhance the Specific Identification of Adenosine 5′-Monophosphate

Author information +
History +

Abstract

Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymers (MIPs). To implement this synergistic strategy, bioinspired surface engineering was used to incorporate dual covalent receptors via precise post-imprinting modifications (PIMs) onto mesoporous silica nanosheets. The prepared sorbents (denoted as “D-PMIPs”) were utilized to improve the specific identification of adenosine 5′-monophosphate (AMP). Significantly, the mesoporous silica nanosheets possess a high surface area of approximately 498.73 m2∙g–1, which facilitates the formation of abundant specific recognition sites in the D-PMIPs. The dual covalent receptors are valuable for establishing the spatial orientation and arrangement of AMP through multiple cooperative interactions. PIMs enable precise site-specific functionalization within the imprinted cavities, leading to the tailor-made formation of complementary binding sites. The maximum number of high-affinity binding sites (Nmax) of the D-PMIPs is 39.99 μmol∙g–1, which is significantly higher than that of imprinted sorbents with a single receptor (i.e., S-BMIPs or S-PMIPs). The kinetic data of the D-PMIPs can be effectively described by a pseudo-second-order model, indicating that the main binding mechanism involves synergistic chemisorption from boronate affinity and the pyrimidine base. This study suggests that using dual covalent receptors and PIMs is a reliable approach for creating imprinted sorbents with high selectivity, allowing for the controlled engineering of imprinted sites.

Keywords

Precise surface engineering / Dual covalent receptor / Precise post-imprinting modification / Specific identification of adenosine 5′-monophosphate

引用本文

导出引用
王盼, 程涛, 韦庄鑫. 受生物表面工程启发结合印迹后修饰和双共价受体策略精准构筑辨识吸附剂并选择性分离5′-单磷酸腺. Engineering. 2025, 45(2): 143-154 https://doi.org/10.1016/j.eng.2024.11.015

参考文献

[1]
Mintz Hemed N, Leal-Ortiz S, Zhao ET, Melosh NA.On-demand, reversible, ultrasensitive polymer membrane based on molecular imprinting polymer.ACS Nano 2023; 17(6):5632-5643.
[2]
Gong X, Tang B, Liu JJ, You XY, Gu J, Deng JY, et al.Synthesis of adenosine-imprinted microspheres for the recognition of ADP-ribosylated proteins.Biosens Bioelectron 2017; 87:858-864.
[3]
Mier A, Maffucci I, Merlier F, Prost E, Montagna V, Ruiz-Esparza GU, et al.Molecularly imprinted polymer nanogels for protein recognition: direct proof of specific binding sites by solution STD and WaterLOGSY NMR spectroscopies.Angew Chem 2021; 60(38):20849-20857.
[4]
Zhang GY, Jiang LY, Zhou JT, Hu LH, Feng SH.Epitope-imprinted mesoporous silica nanoparticles for specific recognition of tyrosine phosphorylation.Chem Commun 2019; 55(67):9927-9930.
[5]
Pan JM, Chen W, Ma Y, Pan GQ.Molecularly imprinted polymers as receptor mimics for selective cell recognition.Chem Soc Rev 2018; 47(15):5574-5587.
[6]
Chen LX, Wang XY, Lu WH, Wu XQ, Li JH.Molecular imprinting: perspectives and applications.Chem Soc Rev 2016; 45(8):2137-2211.
[7]
Jiang WT, Liu L, Chen Y.Simultaneous detection of human C-terminal p53 isoforms by single template molecularly imprinted polymers (MIPs) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics.Anal Chem 2018; 90(5):3058-3066.
[8]
Zhang Y, Xie Y, Shi HZ, Wu ZJ, Zhang CG, Feng S.Facile way to prepare a porous molecular imprinting lock for specifically recognizing oxytetracyclin based on coordination.Anal Chem 2021; 93(10):4536-4541.
[9]
Wang P, Liu JX, Ma Y, Tian XH, Li YZ, Niu XH, et al.Sequential assembly enabled surface precise imprinting on Janus nanosheets for highly specific separation of adenosine 5′-monophosphate.Chem Eng J 2022; 432:134349.
[10]
Wang YF, Wang YG, Ouyang XK, Yang LY.Surface-imprinted magnetic carboxylated cellulose nanocrystals for the highly selective extraction of six fluoroquinolones from egg samples.ACS Appl Mater Interfaces 2017; 9(2):1759-1769.
[11]
Chen Y, Li XL, Yin D, Li D, Bie Z, Liu Z.Dual-template docking oriented molecular imprinting: a facile strategy for highly efficient imprinting within mesoporous materials.Chem Commun 2015; 51(54):10929-10932.
[12]
Yuan QB, Zhang DN, Yu PF, Sun RN, Javed H, Wu G, et al.Selective adsorption and photocatalytic degradation of extracellular antibiotic resistance genes by molecularly-imprinted graphitic carbon nitride.Environ Sci Technol 2020; 54(7):4621-4630.
[13]
Ogunshola F, Anmole G, Miller RL, Goering E, Nkosi T, Muema D, et al.Dual HLA B*42 and B*81-reactive T cell receptors recognize more diverse HIV-1 Gag escape variants.Nat Commun 2018; 9(1):5023.
[14]
Slavkovic S, Zhu Y, Churcher ZR, Shoara AA, Johnson AE, Johnson PE.Thermodynamic analysis of cooperative ligand binding by the ATP-binding DNA aptamer indicates a population-shift binding mechanism.Sci Rep 2020; 10(1):18944.
[15]
Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, et al.Two disparate ligand-binding sites in the human P2Y1 receptor.Nature 2015; 520(7547):317-321.
[16]
Pfreundschuh M, Alsteens D, Wieneke R, Zhang C, Coughlin SR, Tamp Ré, et al.Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM.Nat Commun 2015; 6(1):8857.
[17]
Shinde S, Incel A, Mansour M, Olsson GD, Nicholls IA, Esen C, et al.Urea-based imprinted polymer hosts with switchable anion preference.J Am Chem Soc 2020; 142(26):11404-11416.
[18]
Koide H, Yoshimatsu K, Hoshino Y, Lee SH, Okajima A, Ariizumi S, et al.A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165).Nat Chem 2017; 9(7):715-722.
[19]
Li YQ, Zhang ZJ, Liu BW, Liu JW.Incorporation of boronic acid into aptamer-based molecularly imprinted hydrogels for highly specific recognition of adenosine.ACS Appl Bio Mater 2020; 3(5):2568-2576.
[20]
Deng Z, Fang C, Ma X, Li X, Zeng YJ, Peng X.One stone two birds: Zr–Fc metal–organic framework nanosheet for synergistic photothermal and chemodynamic cancer therapy.ACS Appl Mater Interfaces 2020; 12(18):20321-20330.
[21]
Yang XS, Liu TH, Li RM, Yang XX, Lyu M, Fang L, et al.Host–guest molecular interaction enabled separation of large-diameter semiconducting single-walled carbon nanotubes.J Am Chem Soc 2021; 143(27):10120-10130.
[22]
Albert SK, Lee S, Durai P, Hu X, Jeong B, Park K, et al.Janus nanosheets with face-selective molecular recognition properties from DNA–peptide conjugates.Small 2021; 17(12):2006110.
[23]
Davis BG.Mimicking posttranslational modifications of proteins.Science 2004; 303(5657):480-482.
[24]
Takeuchi T, Mori T, Kuwahara A, Ohta T, Oshita A, Sunayama H, et al.Conjugated-protein mimics with molecularly imprinted reconstructible and transformable regions that are assembled using space-filling prosthetic groups.Angew Chem 2014; 126(47):12979-12984.
[25]
Mori K, Hirase M, Morishige T, Takano E, Sunayama H, Kitayama Y, et al.Polymer-based platform prepared by molecular imprinting and post-imprinting modifications for sensing intact exosomes.Angew Chem 2019; 131(6):1626-1629.
[26]
Horikawa R, Sunayama H, Kitayama Y, Takano E, Takeuchi T.A programmable signaling molecular recognition nanocavity prepared by molecular imprinting and post-imprinting modifications.Angew Chem 2016; 128(42):13217-13221.
[27]
Hiratani H, Alvarez-Lorenzo C, Chuang J, Guney O, Grosberg AY, Tanaka T.Effect of reversible cross-linker, N,N′-bis(acryloyl)cystamine, on calcium ion adsorption by imprinted gels.Langmuir 2001; 17(14):4431-4436.
[28]
Zhao T, Wang JP, He JL, Deng QL, Wang S.One-step post-imprint modification achieve dual-function of glycoprotein fluorescent sensor by “Click Chemistry”.Biosens Bioelectron 2017; 91:756-761.
[29]
Hao WJ, Chen WJ, Chai MH, Yuan FF, Huang LM, Wei ZH, et al.Microfluidic platform based on site-specific post-imprinting modification of molecularly imprinted monolith with Connizzaro reaction to improve identification of N-myristoylated peptides.Sens Actuators B 2022; 356:131338.
[30]
Sunayama H, Ooya T, Takeuchi T.Fluorescent protein-imprinted polymers capable of signal transduction of specific binding events prepared by a site-directed two-step post-imprinting modification.Chem Commun 2014; 50(11):1347-1349.
[31]
Luo ZC, Liang XQ, He T, Qin X, Li XC, Li YS, et al.Lanthanide–nucleotide coordination nanoparticles for STING activation.J Am Chem Soc 2022; 144(36):16366-16377.
[32]
Ma X, Li M, Tong P, Zhao C, Li J, Xu G.A strategy for construction of highly sensitive glycosyl imprinted electrochemical sensor based on sandwich-like multiple signal enhancement and determination of neural cell adhesion molecule.Biosens Bioelectron 2020; 156:112150.
[33]
Yan S, Zou H, Chen S, Xue N, Yang HQ.Janus mesoporous silica nanosheets with perpendicular mesochannels: affording highly accessible reaction interfaces for enhanced biphasic catalysis.Chem Commun 2018; 54(74):10455-10458.
[34]
Liu SC, Liu JX, Pan JM, Luo JQ, Niu XH, Zhang T, et al.Two are better than one: halloysite nanotubes-supported surface imprinted nanoparticles using synergy of metal chelating and low pKa boronic acid monomers for highly specific luteolin binding under neutral condition.ACS Appl Mater Interfaces 2017; 9(38):33191-33202.
[35]
Mour CAão, Bokeloh F, Xu J, Prost E, Duma L, Merlier F, et al.Dual-oriented solid-phase molecular imprinting: toward selective artificial receptors for recognition of nucleotides in water.Macromolecules 2017; 50(19):7484-7490.
[36]
Huh S, Wiench JW, Yoo JC, Pruski M, Lin VSY.Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method.Chem Mater 2003; 15(22):4247-4256.
[37]
Liu JX, Wang P, Zhou MD, Ma Y, Niu XH, Pan GQ, et al.Tailored Janus silica nanosheets integrating bispecific artificial receptors for simultaneous adsorption of 2,6-dichlorophenol and Pb(II).J Mater Chem A 2019; 7(27):16161-16175.
[38]
Liu SC, Pan JM, Liu JX, Ma Y, Qiu FX, Mei L, et al.Dynamically PEGylated and borate-coordination-polymer-coated polydopamine nanoparticles for synergetic tumor-targeted, chemo-photothermal combination therapy.Small 2018; 14(13):1703968.
[39]
Wang P, Dai JD, Ma Y, Chen LX, Pan JM.Fabrication and evaluation of aminoethyl benzo-12-crown-4 functionalized polymer brushes adsorbents formed by surface-initiated ATRP based on macroporous polyHIPEs and postsynthetic modification.Chem Eng J 2020; 380:122495.
[40]
Xu HY, Wang JQ, Yang XH, Ning LP.Magnetically recyclable graphene oxide demulsifier adapting wide pH conditions on detachment of oil in the crude oil-in-water emulsion.ACS Appl Mater Interfaces 2021; 13(5):6748-6757.
[41]
Yuan K, Li Y, Huang X, Liang Y, Liu Q, Jiang GB.Templated synthesis of a bifunctional Janus graphene for enhanced enrichment of both organic and inorganic targets.Chem Commun 2019; 55(34):4957-4960.
[42]
Yesilyurt V, Webber MJ, Appel EA, Godwin C, Langer R, Anderson DG.Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties.Adv Mater 2016; 28(1):86-91.
[43]
Yang WQ, Gao XM, Wang BH.Boronic acid compounds as potential pharmaceutical agents.Med Res Rev 2003; 23(3):346-368.
[44]
Yang YY, Qiu ZH, Weng GY, Wang HB, Li YS, Fan BH, et al.Synthesis of amphiphilic silica with high exposure of surface groups and its utilization in efficient removal of organic dyes from aqueous solution.Adv Funct Mater 2022; 32(2):2106828.
[45]
Nguyen HL, Gropp C, Ma Y, Zhu C, Yaghi OM.3D covalent organic frameworks selectively crystallized through conformational design.J Am Chem Soc 2020; 142(48):20335-20339.
[46]
Dotto GL, de Moura JM, Cadaval TRS, Pinto LAA.Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption.Chem Eng J 2013; 214:8-16.
[47]
Ahmad MA, Rahman NK.Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon.Chem Eng J 2011; 170(1):154-161.
[48]
Albadarin AB, Mangwandi C, Al-Muhtaseb AH, Walker GM, Allen SJ, Ahmad MNM.Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent.Chem Eng J 2012; 179:193-202.
[49]
Al-Ghouti MA, Da DA’ana.Guidelines for the use and interpretation of adsorption isotherm models: a review.J Hazard Mater 2020; 393:122383.
[50]
Song QQ, Liang JL, Fang Y, Cao CC, Liu ZY, Li LL, et al.Selective adsorption behavior/mechanism of antibiotic contaminants on novel boron nitride bundles.J Hazard Mater 2019; 364:654-662.
[51]
Gérente C, Andres Y, McKay G, Le Cloirec P.Removal of arsenic(V) onto chitosan: from sorption mechanism explanation to dynamic water treatment process.Chem Eng J 2010; 158(3):593-598.
[52]
Zhao J, He H, Guo Z, Liu Z.Molecularly imprinted and cladded nanoparticles provide better phosphorylation recognition.Anal Chem 2021; 93(48):16194-16202.
[53]
Zhang ZJ, Liu JW.Molecularly imprinted polymers with DNA aptamer fragments as macromonomers.ACS Appl Mater Interfaces 2016; 8(10):6371-6378.
[54]
Yang XZ, Zhou TZ, Ren BZ, Hursthouse A, Zhang YZ.Removal of Mn(II) by sodium alginate/graphene oxide composite double-network hydrogel beads from aqueous solutions.Sci Rep 2018; 8(1):10717.
[55]
Guo C, Hu YQ, Cao XJ, Wang YS.HILIC-MS/MS for the determination of methylated adenine nucleosides in human urine.Anal Chem 2021; 93(51):17060-17068.
PDF(2295 KB)

Accesses

Citation

Detail

段落导航
相关文章

/