[1] |
Buede DM, Miller WD.The engineering design of systems: models and methods.John Wiley & Sons, Hoboken (2016)
|
[2] |
Sinha R, Paredis CJ, Liang VC, Khosla PK.Modeling and simulation methods for design of engineering systems.J Comput Inf Sci Eng 2001; 1(1):84-91.
|
[3] |
Nagrath I, Gopal M.Control systems engineering.New Age International, Hong Kong (2006)
|
[4] |
Sioshansi R, Conejo AJ.Optimization in engineering.Springer International Publishing, Cham (2017)
|
[5] |
Willard J, Jia X, Xu S, Steinbach M, Kumar V.Integrating scientific knowledge with machine learning for engineering and environmental systems.ACM Comput Surv 2023; 55(4):1-37.
|
[6] |
Penumuru DP, Muthuswamy S, Karumbu P.Identification and classification of materials using machine vision and machine learning in the context of Industry 4.0.J Intell Manuf 2020; 31(5):1229-1241.
|
[7] |
Frank M, Drikakis D, Charissis V.Machine-learning methods for computational science and engineering.Computation 2020; 8(1):15.
|
[8] |
Masana M, Liu X, Twardowski B, Menta M, Bagdanov AD, Van J De Weijer.Class-incremental learning: survey and performance evaluation on image classification.IEEE Trans Pattern Anal Mach Intell 2023; 45(5):5513-5533.
|
[9] |
Jeong D.Artificial intelligence security threat, crime, and forensics: taxonomy and open issues.IEEE Access 2020; 8:184560-184574.
|
[10] |
Nadeem A, Vos D, Cao C, Pajola L, Dieck S, Baumgartner R, et al.SoK: explainable machine learning for computer security applications.In: Proceedings of the 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P); 2023 Jul 3–7; Delft, Netherlands. New York City: IEEE; 2023. p. 221–40.
|
[11] |
Qadir S, Noor B.Applications of machine learning in digital forensics.In: Proceedings of the 2021 International Conference on Digital Futures and Transformative Technologies (ICoD T2); 2021 May 20–21; Islamabad, Pakistan. New York City: IEE E; 2021. p. 1–8.
|
[12] |
Newhart KB, Marks CA, Rauch-Williams T, Cath TY, Hering AS.Hybrid statistical-machine learning ammonia forecasting in continuous activated sludge treatment for improved process control.J Water Process Eng 2020; 37:101389.
|
[13] |
Lu W, Lou J, Wu L.Combining smart construction objects-enabled blockchain oracles and signature techniques to ensure information authentication and integrity in construction.J Comput Civ Eng 2023; 37(6):04023031.
|
[14] |
Venkatesan C, Karthigaikumar P, Varatharajan R.A novel LMS algorithm for ECG signal preprocessing and KNN classifier based abnormality detection.Multimedia Tools Appl 2018; 77(8):10365-10374.
|
[15] |
Lu W, Wu L, Zhao R, Li X, Xue F.Blockchain technology for governmental supervision of construction work: learning from digital currency electronic payment systems.J Constr Eng Manage 2021; 147(10):04021122.
|
[16] |
Lu W, Wu L, Zhao R.Rebuilding trust in the construction industry: a blockchain-based deployment framework.Int J Constr Manag 2023; 23(8):1405-1416.
|
[17] |
Papernot N, McDaniel P, Sinha A, Wellman MP.SoK: security and privacy in machine learning.In: Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS&P); 2018 Apr 24–26; London, UK. New York City: IEEE; 2018. p. 399–414.
|
[18] |
Currie R.Software engineer accused of stealing $300k from employer was ‘inspired by office space’ [Internet].San Francisco: Situation Publishing; 2023 Jan 13 [cited 2023 Feb 6]. Available from: https://www.theregister.com/2023/01/13/office_space_zulily_theft/?td=rt-3a.
|
[19] |
Fang M, Cao X, Jia J, Gong NZ.Local model poisoning attacks to byzantine-robust federated learning.In: Proceedings of the 29th USENIX Conference on Security Symposium; 2020 Aug 12–14; Berkeley, C A, US A. Berkeley: The USENIX Association; 2020. p. 1623–40.
|
[20] |
Lee JH, Shin J, Realff MJ.Machine learning: overview of the recent progresses and implications for the process systems engineering field.Comput Chem Eng 2018; 114:111-121.
|
[21] |
Guo J, Gao H, Liu Z, Huang F, Zhang J, Li X, et al.ICRA: an intelligent clustering routing approach for UAV ad hoc networks.IEEE Trans Intell Transp Syst 2023; 24(2):2447-2460.
|
[22] |
Yuan L, Lu W, Xue F, Li M.Building feature‐based machine learning regression to quantify urban material stocks: a Hong Kong study.J Ind Ecol 2023; 27(1):336-349.
|
[23] |
Yuan L, Lu W, Wu Y.Characterizing the spatiotemporal evolution of building material stock in China’s greater bay area: a statistical regression method.J Ind Ecol 2023; 27(6):1553-1566.
|
[24] |
Guo J, Li X, Liu Z, Ma J, Yang C, Zhang J, et al.Trove: a context-awareness trust model for vanets using reinforcement learning.IEEE Internet Things J 2020; 7(7):6647-6662.
|
[25] |
Dong Z, Chen J, Lu W.Computer vision to recognize construction waste compositions: a novel boundary-aware transformer (BAT) model.J Environ Manage 2022; 305:114405.
|
[26] |
Dong Z, Wang J, Cui B, Wang D, Wang X.Patch-based weakly supervised semantic segmentation network for crack detection.Constr Build Mater 2020; 258:120291.
|
[27] |
Parashar A, Parashar A, Shabaz M, Gupta D, Sahu AK, Khan MA.Advancements in artificial intelligence for biometrics: a deep dive into model-based gait recognition techniques.Eng Appl Artif Intell 2024; 130:107712.
|
[28] |
Asmitha P, Rupa C, Nikitha S, Hemalatha J, Sahu AK.Improved multiview biometric object detection for anti spoofing frauds.Multimedia Tools Appl 2024; 83(33):80161.
|
[29] |
Teoh YK, Gill SS, Parlikad AK.Iot and fog computing based predictive maintenance model for effective asset management in Industry 4.0 using machine learning.IEEE Internet Things J 2021; 10(3):2087-2094.
|
[30] |
L Găzăroiu, Andronie M, Iatagan M, Geam Mănu, Dijm Iărescu.Deep learning-assisted smart process planning, robotic wireless sensor networks, and geospatial big data management algorithms in the internet of manufacturing things.ISPRS Int J Geoinf 2022; 11(5):277.
|
[31] |
Li M, Xue F, Wu Y, Yeh AG.A room with a view: automatic assessment of window views for high-rise high-density areas using city information models and deep transfer learning.Landsc Urban Plan 2022; 226:104505.
|
[32] |
Chan IY, Liu AM.Effects of neighborhood building density, height, greenspace, and cleanliness on indoor environment and health of building occupants.Build Environ 2018; 145:213-222.
|
[33] |
Leung M, Wang C, Chan IY.A qualitative and quantitative investigation of effects of indoor built environment for people with dementia in care and attention homes.Build Environ 2019; 157:89-100.
|
[34] |
Lu W, Wu L, Xu J, Lou J.Construction E-inspection 2.0 in the COVID-19 pandemic era: a blockchain-based technical solution.J Manage Eng 2022; 38(4):04022032.
|
[35] |
Solanki S, Solanki AD.Review of deployment of machine learning in blockchain methodology.Int Res J Adv Sci Hub 2020; 2(9):14-20.
|
[36] |
Shinde R, Nilakhe O, Pondkule P, Karche D, Shendage P.Enhanced road construction process with machine learning and blockchain technology.In: Proceedings of the 2020 International Conference on Industry 4.0 Technology (I4Tech); 2020 Feb 13–15, Pune, India. New York City: IEE E; 2020. p. 207–10.
|
[37] |
Wong P, Chia F, Kiu M, Lou E.The potential of integrating blockchain technology into smart sustainable city development.In: Proceedings of the IOP Conference Series: Earth and Environmental Science; 2020 Sep 18–20; Changsha, China. Bristol: IOP Publishing; 2020. p. 012020.
|
[38] |
Xu J, Lu W, Wu L, Lou J, Li X.Balancing privacy and occupational safety and health in construction: a blockchain-enabled P-OSH deployment framework.Saf Sci 2022; 154:105860.
|
[39] |
Rk K, Kallapu B, Dodmane R, Thota S, Sahu AK.Enhancing cloud communication security: a blockchain-powered framework with attribute-aware encryption.Electronics (Basel) 2023; 12(18):3890.
|
[40] |
Podder D, Deb S, Banik D, Kar N, Sahu AK.Robust medical and color image cryptosystem using array index and chaotic S-box.Cluster Comput 2024; 27(4):4321.
|
[41] |
Jovanovic Z, Hou Z, Biswas K, Muthukkumarasamy V.Robust integration of blockchain and explainable federated learning for automated credit scoring.Comput Netw 2024; 243:110303.
|
[42] |
Li X, Zeng J, Chen C, Chi H, Shen GQ.Smart work package learning for decentralized fatigue monitoring through facial images.Comput Aided Civ Infrastruct Eng 2023; 38(6):799-817.
|
[43] |
Kasyap H, Tripathy S.Privacy-preserving and byzantine-robust federated learning framework using permissioned blockchain.Expert Syst Appl 2024; 238:122210.
|
[44] |
Wu L, Lu W, Chen C.Strengths and weaknesses of client-server and peer-to-peer network models in construction projects.Int J Constr Manag 2023; 24(12):1349-1363.
|
[45] |
Peethambaran G, Naikodi C, Suresh L.An ensemble learning approach for privacy–quality–efficiency trade-off in data analytics.In: Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSE C); 2020 Sep 10–12; Trichy, India. New York City: IEE E; 2020. p. 228–35.
|
[46] |
Cooper AF, Levy K, De Sa C.Regulating accuracy-efficiency trade-offs in distributed machine learning systems.2020. SSR N 3650497.
|
[47] |
Al-Marridi AZ, Mohamed A, Erbad A.Reinforcement learning approaches for efficient and secure blockchain-powered smart health systems.Comput Netw 2021; 197:108279.
|
[48] |
Jiang R, Li J, Bu W, Shen X.A blockchain-based trustworthy model evaluation framework for deep learning and its application in moving object segmentation.Sensors 2023; 23(14):6492.
|
[49] |
Feng X, Li L, Wang T, Xu W, Zhang J, Wei B, et al.CoBC: a blockchain-based collaborative inference system for the internet of things.IEEE Internet Things J 2023; 10(24):21389-21400.
|
[50] |
Wang SJ, Pei K, Yang J.SmartInv: multimodal learning for smart contract invariant inference.In: Proceedings of the 2024 IEEE Symposium on Security and Privacy (S P); 2024 May 19–23; San Francisco, C A, US A. New York City: IEE E; 2024.
|
[51] |
Adel K, Elhakeem A, Marzouk M.Decentralizing construction ai applications using blockchain technology.Expert Syst Appl 2022; 194:116548.
|
[52] |
Amershi S, Begel A, Bird C, DeLine R, Gall H, Kamar E, et al.Software engineering for machine learning: a case study.In: Proceedings of the 2019 IEE E/AC M 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEI P); 2019 May 25–31; Montreal, Q C, Canada. New York City: IEE E; 2019. p. 291–300.
|
[53] |
Bertolini M, Mezzogori D, Neroni M, Zammori F.Machine learning for industrial applications: a comprehensive literature review.Expert Syst Appl 2021; 175:114820.
|
[54] |
Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al.Segment anything.2023. arXiv: 2304.02643.
|
[55] |
Gerard C.Practical machine learning in JavaScript: TensorFlow.js for web developers.Springer, Berlin 2021; 25-43.
|
[56] |
Wu H, Zhong B, Li H, Guo J, Wang Y.On-site construction quality inspection using blockchain and smart contracts.J Manage Eng 2021; 37(6):04021065.
|
[57] |
Ongaro D, Ousterhout J.In search of an understandable consensus algorithm.In: Proceedings of the 2014 USENIX Annual Technical Conference (USENIX ATC 14); 2014 Jun 19–20; Philadelphia, P A, US A. Berkeley: The USENIX Association; 2014. p. 305–19.
|
[58] |
Chen LC, Papandreou G, Schroff F, Adam H.Rethinking atrous convolution for semantic image segmentation.2017. arXiv: 1706.05587.
|
[59] |
Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, et al.Searching for mobilenetv3.In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019 Oct 27–Nov 2; Seoul, Republic of Korea. New York City: IEE E; 2019. p. 1314–24.
|
[60] |
Dobbertin H.Cryptanalysis of MD5 compress.In: Proceedings of the EUROCRYPT’ 96 Rump Session; 1996 May 12–16; Zaragoza, Spain. Bellevue: International Association for Cryptologic Research; 1996. p. 9671–82.
|
[61] |
Anderson JC, Lehnardt J, Slater N.CouchDB: the definitive guide: time to relax.editors. Sebastopol: O’Reilly Media; 2010.
|
[62] |
Savsunenko O.How tensorflow’s tf.image. resize stole 60 days of my life [Internet]. Edwards: HackerNoon; 2018 Jan 23 [cited 2023 Dec 14]. Available from: https://hackernoon.com/how-tensorflows-tf-image-resize-stole-60-days-of-my-life-aba5eb093f35.
|
[63] |
Zheng P, Li S, Xia L, Wang L, Nassehi A.A visual reasoning-based approach for mutual-cognitive human-robot collaboration.CIRP Ann 2022; 71(1):377-380.
|
[64] |
Guo J, Liu Z, Tian S, Huang F, Li J, Li X, et al.TFL-DT: a trust evaluation scheme for federated learning in digital twin for mobile networks.IEEE J Sel Areas Comm 2023; 41(11):3548-3560.
|
[65] |
Miao J, Yang Z, Fan L, Yang Y.FedSeg: class-heterogeneous federated learning for semantic segmentation.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition;2023 Jun 17–24; Vancouver, B C, Canada. New York City: IEE E; 2023. p. 8042–52.
|
[66] |
Hua H, Li Y, Wang T, Dong N, Li W, Cao J.Edge computing with artificial intelligence: a machine learning perspective.ACM Comput Surv 2023; 55(9):1-35.
|
[67] |
Li L, Fan Y, Tse M, Lin KY.A review of applications in federated learning.Comput Ind Eng 2020; 149:106854.
|
[68] |
Kayikci S, Khoshgoftaar TM.Blockchain meets machine learning: a survey.J Big Data 2024; 11(1):9.
|