一种具有新颖拓扑表示的高效、多功能的可重构智能超表面设计范式

Ying Juan Lu, Jia Nan Zhang, Yi Han Zhao, Jun Wei Zhang, Zhen Zhang, Rui Zhe Jiang, Jing Cheng Liang, Hui Dong Li, Jun Yan Dai, Tie Jun Cui, Qiang Cheng

工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 163-173.

PDF(3236 KB)
PDF(3236 KB)
工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 163-173. DOI: 10.1016/j.eng.2024.11.028
Article

 一种具有新颖拓扑表示的高效、多功能的可重构智能超表面设计范式

作者信息 +

A High-Efficiency and Versatile Reconfigurable Intelligent Surface Design Paradigm with Novel Topological Representation

Author information +
History +

Abstract

With digital coding technology, reconfigurable intelligent surfaces (RISs) become powerful real-time systems for manipulating electromagnetic (EM) waves. However, most automatic RIS designs involve extensive numerical simulations of the unit, including the passive pattern and active devices, requiring high data acquisition and training costs. In addition, for passive patterns, the widely employed random pixelated method presents design efficiency and effectiveness challenges due to the massive pixel combinations and blocked excitation current flow in discrete patterns. To overcome these two critical problems, we propose a versatile RIS design paradigm with efficient topology representation and a separate design architecture. First, a non-uniform rational B-spline (NURBS) is introduced to represent continuous patterns and solve excitation current flow issues. This representation makes it possible to finely tune continuous patterns with several control points, greatly reducing the pattern solution space by 20-fold and facilitating RIS optimization. Then, employing multiport network theory to separate the passive pattern and active device from the unit, the separate design architecture significantly reduces the dataset acquisition cost by 62.5%. Through multistep multiport calculation, the multistate EM responses of the RIS under different structural combinations can be quickly obtained with only one prediction of pattern response, thereby achieving dataset and model reuse for different RIS designs. With a hybrid continuous-discrete optimization algorithm, three examples—including two typical high-performance RISs and an ultra-wideband multilayer RIS—are provided to validate the superiority of our paradigm. Our work offers an efficient solution for RIS automatic design, and the resulting structure is expected to boost RIS applications in the fields of wireless communication and sensing.

Keywords

Reconfigurable intelligent surfaces / Non-uniform rational B-splines / Separate design architecture / Dataset reuse / Versatile metasurfaces design

引用本文

导出引用
Ying Juan Lu, Jia Nan Zhang, Yi Han Zhao. . Engineering. 2025, 48(5): 163-173 https://doi.org/10.1016/j.eng.2024.11.028

参考文献

[1]
H.T. Chen, A.J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep Prog Phys, 79 ( 7) ( 2016), Article 076401
[2]
T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 3 ( 10) ( 2014), p. e218
[3]
J.C. Liang, L. Zhang, Z.W. Cheng, P. Zhang, T.J. Cui. Flexible beam manipulations by reconfigurable intelligent surface with independent control of amplitude and phase. Front Mater, 9 ( 2022), Article 946163
[4]
X. Bai, F.R. Zhang, L. Sun, A. Cao, J. Zhang, C. He, et al. . Time-modulated transmissive programmable metasurface for low sidelobe beam scanning. Research, 2022 ( 2022), Article 9825903
[5]
D. Ramaccia, A. Tobia, A. Toscano, F. Bilotti. Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth. IEEE Trans Antennas Propag, 66 ( 5) ( 2018), pp. 2346- 2353
[6]
H. Yang, T. Li, L. Jidi, K. Gao, Q. Li, J. Qiao, et al. . From metasurface to low-RCS array antenna: a fast and efficient route to design stealthy array antennas. IEEE Trans Antennas Propag, 71 ( 5) ( 2023), pp. 4075- 4084
[7]
J.W. Wu, Z.X. Wang, L. Zhang, Q. Cheng, S. Liu, S. Zhang, et al. . Anisotropic metasurface holography in 3-D space with high resolution and efficiency. IEEE Trans Antennas Propag, 69 ( 1) ( 2021), pp. 302- 316
[8]
F. Zhang, C. Wang, W. Feng, T. Liu, Z. Wang, Y. Wang, et al. . Holographic communication using programmable coding metasurface. Nanophotonics, 13 ( 8) ( 2024), pp. 1509- 1519
[9]
M. Alibakhshi-Kenari, M. Naser-Moghadasi, R.A. Sadeghzadeh, B.S. Virdee, E. Limiti. Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications. AEU Int J Electron Commun, 70 ( 12) ( 2016), pp. 1645- 1650
[10]
M. Alibakhshikenari, B.S. Virdee, E. Limiti. Wideband planar array antenna based on SCRLH-TL for airborne synthetic aperture radar application. J Electromagn Waves Appl, 32 ( 12) ( 2018), pp. 1586- 1599
[11]
M. Alibakhshikenari, B.S. Virdee, P. Shukla, Y. Wang, L. Azpilicueta, M. Naser-Moghadasi, et al. . Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network. IEEE Access, 9 ( 2021), pp. 67916- 67927
[12]
M. Wei, H. Zhao, V. Galdi, L. Li, T.J. Cui. Metasurface-enabled smart wireless attacks at the physical layer. Nat Electron, 6 ( 8) ( 2023), pp. 610- 618
[13]
H. Li, K. Xin, H. Ding, T. Li, G. Hu, H.X. Xu. Programmable metasurface for front-back scattering communication. Nanophotonics, 12 ( 18) ( 2023), pp. 3653- 3661
[14]
C. Kate, C. Kalpana, A. Sharma, A.S. Yadav, A. Kumar, S.S. Kumar. Investigation of machine learning algorithms for pattern recognition in image processing, IEEE, Coimbatore, India. New York City ( 2023), pp. 898- 904
[15]
B.C. Stoel, M. Staring, M. Reijnierse, A.H.M. van der Helm-van Mil. Deep learning in rheumatological image interpretation. Nat Rev Rheumatol, 20 ( 3) ( 2024), pp. 182- 195
[16]
H. Zhou, B. Qiao, L. Yang, J. Lai, X. Xie. Texture-guided saliency distilling for unsupervised salient object detection, IEEE, Vancouver, BC, Canada. New York City ( 2023), pp. 7257- 7267
[17]
T. Diwan, G. Anirudh, J.V. Tembhurne. Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimedia Tools Appl, 82 ( 6) ( 2023), pp. 9243- 9275
[18]
K. Ohmae, S. Ohmae. Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum. Nat Commun, 15 ( 2024), p. 927
[19]
M. Isaksson, D. Wisell, D. Ronnow. Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks. IEEE Trans Microw Theory Tech, 53 ( 11) ( 2005), pp. 3422- 3428
[20]
S. Koziel, M. Abdullah. Machine-learning-powered EM-based framework for efficient and reliable design of low scattering metasurfaces. IEEE Trans Microw Theory Tech, 69 ( 4) ( 2021), pp. 2028- 2041
[21]
A. Gupta, E.A. Karahan, C. Bhat, K. Sengupta, U.K. Khankhoje. Tandem neural network based design of multiband antennas. IEEE Trans Antennas Propag, 71 ( 8) ( 2023), pp. 6308- 6317
[22]
W. Ma, Z. Liu, Z.A. Kudyshev, A. Boltasseva, W. Cai, Y. Liu. Deep learning for the design of photonic structures. Nat Photonics, 15 ( 2) ( 2021), pp. 77- 90
[23]
I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski. Plasmonic nanostructure design and characterization via deep learning. Light Sci Appl, 7 ( 2018), p. 60
[24]
R. Zhu, T. Qiu, J. Wang, S. Sui, C. Hao, T. Liu, et al. . Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat Commun, 12 ( 2021), p. 2974
[25]
P. Naseri, S.V. Hum. A generative machine learning-based approach for inverse design of multilayer metasurfaces. IEEE Trans Antennas Propag, 69 ( 9) ( 2021), pp. 5725- 5739
[26]
J. Zhang, C. Qian, Z. Fan, J. Chen, E. Li, J. Jin, et al. . Heterogeneous transfer-learning-enabled diverse metasurface design. Adv Opt Mater, 10 ( 17) ( 2022), Article 2200748
[27]
P. Naseri, S. Pearson, Z. Wang, S.V. Hum. A combined machine-learning/optimization-based approach for inverse design of nonuniform bianisotropic metasurfaces. IEEE Trans Antennas Propag, 70 ( 7) ( 2022), pp. 5105- 5119
[28]
Y. Jia, C. Qian, Z. Fan, T. Cai, E.P. Li, H. Chen. A knowledge-inherited learning for intelligent metasurface design and assembly. Light Sci Appl, 12 ( 2023), p. 82
[29]
P. Wang, Z. Li, C. Luo, Z. Wei, T. Wu, W. Jiang, et al. . Preprocessing-based fast design of multiple EM structures with one deep neural network. IEEE Trans Antennas Propag, 72 ( 5) ( 2024), pp. 4298- 4310
[30]
P. Wang, Z. Li, Z. Wei, T. Wu, C. Luo, W. Jiang, et al. . Space-time-coding digital metasurface element design based on state recognition and mapping methods with CNN-LSTM-DNN. IEEE Trans Antennas Propag, 72 ( 6) ( 2024), pp. 4962- 4975
[31]
P. Wang, Z. Wei, T. Wu, W. Jiang, T. Hong, G.F. Pedersen, et al. . A machine learning framework for the design of STCDME structures in RIS applications. IEEE Trans Microw Theory Tech, 72 ( 3) ( 2024), pp. 1467- 1479
[32]
S. Jafar-Zanjani, S. Inampudi, H. Mosallaei. Adaptive genetic algorithm for optical metasurfaces design. Sci Rep, 8 ( 2018), p. 11040
[33]
Z. Wei, Z. Zhou, P. Wang, J. Ren, Y. Yin, G.F. Pedersen, et al. . Equivalent circuit theory-assisted deep learning for accelerated generative design of metasurfaces. IEEE Trans Antennas Propag, 70 ( 7) ( 2022), pp. 5120- 5129
[34]
B. Wu, G. Wang, K. Liu, G. Hu, H.X. Xu. Equivalent-circuit-intervened deep learning metasurface. Mater Des, 218 ( 2022), Article 110725
[35]
T. Brown, P. Mojabi. Cascaded metasurface design using electromagnetic inversion with gradient-based optimization. IEEE Trans Antennas Propag, 70 ( 3) ( 2022), pp. 2033- 2045
[36]
J. Zhang, J.W. You, F. Feng, W. Na, Z.C. Lou, Q.J. Zhang, et al. . Physics-driven machine-learning approach incorporating temporal coupled mode theory for intelligent design of metasurfaces. IEEE Trans Microw Theory Tech, 71 ( 7) ( 2023), pp. 2875- 2887
[37]
W. Ji, J. Chang, H.X. Xu, J.R. Gao, S. Gröblacher, H.P. Urbach, et al. . Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light Sci Appl, 12 ( 2023), p. 169
[38]
Z. Chen, Y. Liu, H. Sun. Physics-informed learning of governing equations from scarce data. Nat Commun, 12 ( 2021), p. 6136
[39]
O. Khatib, S. Ren, J. Malof, W.J. Padilla. Learning the physics of all‐dielectric metamaterials with deep Lorentz neural networks. Adv Opt Mater, 10 ( 13) ( 2022), Article 2200097
[40]
P. Liu, L. Chen, Z.N. Chen. Prior-knowledge-guided deep-learning-enabled synthesis for broadband and large phase shift range metacells in metalens antenna. IEEE Trans Antennas Propag, 70 ( 7) ( 2022), pp. 5024- 5034
[41]
S. Ghosh, S. Bhattacharyya, K.V. Srivastava. Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber. IET Microw Antennas Propag, 10 ( 8) ( 2016), pp. 850- 855
[42]
Z. Zhang, J.W. Zhang, J.W. Wu, J.C. Liang, Z.X. Wang, Q. Cheng, et al. . Macromodeling of reconfigurable intelligent surface based on microwave network theory. IEEE Trans Antennas Propag, 70 ( 10) ( 2022), pp. 8707- 8717
[43]
Lampinen J, Zelinka I. Mixed integer-discrete-continuous optimization by differential evolution-part 1:the optimization method. In:Proceedings of the 5th International Mendel Conference on Soft Computing; 1999 Jun 9- 12; Brno, Czech Republic. Berlin:Springer; 1999. p. 71- 6.
[44]
R. Echter, B. Oesterle, M. Bischoff. A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng, 254 ( 2013), pp. 170- 180
[45]
D. Schillinger, M. Ruess. The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng, 22 ( 3) ( 2015), pp. 391- 455
[46]
D.R. Smith, D.C. Vier, Th. Koschny, C.M. Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E Stat Nonlin Soft Matter Phys, 71 ( 3) ( 2005), Article 036617
[47]
V.A. Monaco, P. Tiberio. Computer-aided analysis of microwave circuits. IEEE Trans Microw Theory Tech, 22 ( 3) ( 1974), pp. 249- 263
基金
 
PDF(3236 KB)

Accesses

Citation

Detail

段落导航
相关文章

/