[1] |
H.T. Chen, A.J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep Prog Phys, 79 ( 7) ( 2016), Article 076401
|
[2] |
T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 3 ( 10) ( 2014), p. e218
|
[3] |
J.C. Liang, L. Zhang, Z.W. Cheng, P. Zhang, T.J. Cui. Flexible beam manipulations by reconfigurable intelligent surface with independent control of amplitude and phase. Front Mater, 9 ( 2022), Article 946163
|
[4] |
X. Bai, F.R. Zhang, L. Sun, A. Cao, J. Zhang, C. He, et al. . Time-modulated transmissive programmable metasurface for low sidelobe beam scanning. Research, 2022 ( 2022), Article 9825903
|
[5] |
D. Ramaccia, A. Tobia, A. Toscano, F. Bilotti. Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth. IEEE Trans Antennas Propag, 66 ( 5) ( 2018), pp. 2346- 2353
|
[6] |
H. Yang, T. Li, L. Jidi, K. Gao, Q. Li, J. Qiao, et al. . From metasurface to low-RCS array antenna: a fast and efficient route to design stealthy array antennas. IEEE Trans Antennas Propag, 71 ( 5) ( 2023), pp. 4075- 4084
|
[7] |
J.W. Wu, Z.X. Wang, L. Zhang, Q. Cheng, S. Liu, S. Zhang, et al. . Anisotropic metasurface holography in 3-D space with high resolution and efficiency. IEEE Trans Antennas Propag, 69 ( 1) ( 2021), pp. 302- 316
|
[8] |
F. Zhang, C. Wang, W. Feng, T. Liu, Z. Wang, Y. Wang, et al. . Holographic communication using programmable coding metasurface. Nanophotonics, 13 ( 8) ( 2024), pp. 1509- 1519
|
[9] |
M. Alibakhshi-Kenari, M. Naser-Moghadasi, R.A. Sadeghzadeh, B.S. Virdee, E. Limiti. Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications. AEU Int J Electron Commun, 70 ( 12) ( 2016), pp. 1645- 1650
|
[10] |
M. Alibakhshikenari, B.S. Virdee, E. Limiti. Wideband planar array antenna based on SCRLH-TL for airborne synthetic aperture radar application. J Electromagn Waves Appl, 32 ( 12) ( 2018), pp. 1586- 1599
|
[11] |
M. Alibakhshikenari, B.S. Virdee, P. Shukla, Y. Wang, L. Azpilicueta, M. Naser-Moghadasi, et al. . Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network. IEEE Access, 9 ( 2021), pp. 67916- 67927
|
[12] |
M. Wei, H. Zhao, V. Galdi, L. Li, T.J. Cui. Metasurface-enabled smart wireless attacks at the physical layer. Nat Electron, 6 ( 8) ( 2023), pp. 610- 618
|
[13] |
H. Li, K. Xin, H. Ding, T. Li, G. Hu, H.X. Xu. Programmable metasurface for front-back scattering communication. Nanophotonics, 12 ( 18) ( 2023), pp. 3653- 3661
|
[14] |
C. Kate, C. Kalpana, A. Sharma, A.S. Yadav, A. Kumar, S.S. Kumar. Investigation of machine learning algorithms for pattern recognition in image processing, IEEE, Coimbatore, India. New York City ( 2023), pp. 898- 904
|
[15] |
B.C. Stoel, M. Staring, M. Reijnierse, A.H.M. van der Helm-van Mil. Deep learning in rheumatological image interpretation. Nat Rev Rheumatol, 20 ( 3) ( 2024), pp. 182- 195
|
[16] |
H. Zhou, B. Qiao, L. Yang, J. Lai, X. Xie. Texture-guided saliency distilling for unsupervised salient object detection, IEEE, Vancouver, BC, Canada. New York City ( 2023), pp. 7257- 7267
|
[17] |
T. Diwan, G. Anirudh, J.V. Tembhurne. Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimedia Tools Appl, 82 ( 6) ( 2023), pp. 9243- 9275
|
[18] |
K. Ohmae, S. Ohmae. Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum. Nat Commun, 15 ( 2024), p. 927
|
[19] |
M. Isaksson, D. Wisell, D. Ronnow. Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks. IEEE Trans Microw Theory Tech, 53 ( 11) ( 2005), pp. 3422- 3428
|
[20] |
S. Koziel, M. Abdullah. Machine-learning-powered EM-based framework for efficient and reliable design of low scattering metasurfaces. IEEE Trans Microw Theory Tech, 69 ( 4) ( 2021), pp. 2028- 2041
|
[21] |
A. Gupta, E.A. Karahan, C. Bhat, K. Sengupta, U.K. Khankhoje. Tandem neural network based design of multiband antennas. IEEE Trans Antennas Propag, 71 ( 8) ( 2023), pp. 6308- 6317
|
[22] |
W. Ma, Z. Liu, Z.A. Kudyshev, A. Boltasseva, W. Cai, Y. Liu. Deep learning for the design of photonic structures. Nat Photonics, 15 ( 2) ( 2021), pp. 77- 90
|
[23] |
I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski. Plasmonic nanostructure design and characterization via deep learning. Light Sci Appl, 7 ( 2018), p. 60
|
[24] |
R. Zhu, T. Qiu, J. Wang, S. Sui, C. Hao, T. Liu, et al. . Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat Commun, 12 ( 2021), p. 2974
|
[25] |
P. Naseri, S.V. Hum. A generative machine learning-based approach for inverse design of multilayer metasurfaces. IEEE Trans Antennas Propag, 69 ( 9) ( 2021), pp. 5725- 5739
|
[26] |
J. Zhang, C. Qian, Z. Fan, J. Chen, E. Li, J. Jin, et al. . Heterogeneous transfer-learning-enabled diverse metasurface design. Adv Opt Mater, 10 ( 17) ( 2022), Article 2200748
|
[27] |
P. Naseri, S. Pearson, Z. Wang, S.V. Hum. A combined machine-learning/optimization-based approach for inverse design of nonuniform bianisotropic metasurfaces. IEEE Trans Antennas Propag, 70 ( 7) ( 2022), pp. 5105- 5119
|
[28] |
Y. Jia, C. Qian, Z. Fan, T. Cai, E.P. Li, H. Chen. A knowledge-inherited learning for intelligent metasurface design and assembly. Light Sci Appl, 12 ( 2023), p. 82
|
[29] |
P. Wang, Z. Li, C. Luo, Z. Wei, T. Wu, W. Jiang, et al. . Preprocessing-based fast design of multiple EM structures with one deep neural network. IEEE Trans Antennas Propag, 72 ( 5) ( 2024), pp. 4298- 4310
|
[30] |
P. Wang, Z. Li, Z. Wei, T. Wu, C. Luo, W. Jiang, et al. . Space-time-coding digital metasurface element design based on state recognition and mapping methods with CNN-LSTM-DNN. IEEE Trans Antennas Propag, 72 ( 6) ( 2024), pp. 4962- 4975
|
[31] |
P. Wang, Z. Wei, T. Wu, W. Jiang, T. Hong, G.F. Pedersen, et al. . A machine learning framework for the design of STCDME structures in RIS applications. IEEE Trans Microw Theory Tech, 72 ( 3) ( 2024), pp. 1467- 1479
|
[32] |
S. Jafar-Zanjani, S. Inampudi, H. Mosallaei. Adaptive genetic algorithm for optical metasurfaces design. Sci Rep, 8 ( 2018), p. 11040
|
[33] |
Z. Wei, Z. Zhou, P. Wang, J. Ren, Y. Yin, G.F. Pedersen, et al. . Equivalent circuit theory-assisted deep learning for accelerated generative design of metasurfaces. IEEE Trans Antennas Propag, 70 ( 7) ( 2022), pp. 5120- 5129
|
[34] |
B. Wu, G. Wang, K. Liu, G. Hu, H.X. Xu. Equivalent-circuit-intervened deep learning metasurface. Mater Des, 218 ( 2022), Article 110725
|
[35] |
T. Brown, P. Mojabi. Cascaded metasurface design using electromagnetic inversion with gradient-based optimization. IEEE Trans Antennas Propag, 70 ( 3) ( 2022), pp. 2033- 2045
|
[36] |
J. Zhang, J.W. You, F. Feng, W. Na, Z.C. Lou, Q.J. Zhang, et al. . Physics-driven machine-learning approach incorporating temporal coupled mode theory for intelligent design of metasurfaces. IEEE Trans Microw Theory Tech, 71 ( 7) ( 2023), pp. 2875- 2887
|
[37] |
W. Ji, J. Chang, H.X. Xu, J.R. Gao, S. Gröblacher, H.P. Urbach, et al. . Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light Sci Appl, 12 ( 2023), p. 169
|
[38] |
Z. Chen, Y. Liu, H. Sun. Physics-informed learning of governing equations from scarce data. Nat Commun, 12 ( 2021), p. 6136
|
[39] |
O. Khatib, S. Ren, J. Malof, W.J. Padilla. Learning the physics of all‐dielectric metamaterials with deep Lorentz neural networks. Adv Opt Mater, 10 ( 13) ( 2022), Article 2200097
|
[40] |
P. Liu, L. Chen, Z.N. Chen. Prior-knowledge-guided deep-learning-enabled synthesis for broadband and large phase shift range metacells in metalens antenna. IEEE Trans Antennas Propag, 70 ( 7) ( 2022), pp. 5024- 5034
|
[41] |
S. Ghosh, S. Bhattacharyya, K.V. Srivastava. Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber. IET Microw Antennas Propag, 10 ( 8) ( 2016), pp. 850- 855
|
[42] |
Z. Zhang, J.W. Zhang, J.W. Wu, J.C. Liang, Z.X. Wang, Q. Cheng, et al. . Macromodeling of reconfigurable intelligent surface based on microwave network theory. IEEE Trans Antennas Propag, 70 ( 10) ( 2022), pp. 8707- 8717
|
[43] |
Lampinen J, Zelinka I. Mixed integer-discrete-continuous optimization by differential evolution-part 1:the optimization method. In:Proceedings of the 5th International Mendel Conference on Soft Computing; 1999 Jun 9- 12; Brno, Czech Republic. Berlin:Springer; 1999. p. 71- 6.
|
[44] |
R. Echter, B. Oesterle, M. Bischoff. A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng, 254 ( 2013), pp. 170- 180
|
[45] |
D. Schillinger, M. Ruess. The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng, 22 ( 3) ( 2015), pp. 391- 455
|
[46] |
D.R. Smith, D.C. Vier, Th. Koschny, C.M. Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E Stat Nonlin Soft Matter Phys, 71 ( 3) ( 2005), Article 036617
|
[47] |
V.A. Monaco, P. Tiberio. Computer-aided analysis of microwave circuits. IEEE Trans Microw Theory Tech, 22 ( 3) ( 1974), pp. 249- 263
|