[1] |
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al.Diverse applications of nanomedicine.ACS Nano 2017; 11(3):2313-2381.
|
[2] |
Stewart MP, Langer R, Jensen KF.Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts.Chem Rev 2018; 118(16):7409-7531.
|
[3] |
Chung YH, Cai H, Steinmetz NF.Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications.Adv Drug Deliv Rev 2020; 156:214-235.
|
[4] |
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG.Non-viral vectors for gene-based therapy.Nat Rev Genet 2014; 15(8):541-555.
|
[5] |
van A Wamel, Kooiman K, Harteveld M, Emmer M, ten FJ Cate, Versluis M, et al.Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation.J Control Release 2006; 112(2):149-155.
|
[6] |
Yarmush ML, Golberg A, Ser Gša, Kotnik T, Miklav Dčič.Electroporation-based technologies for medicine: principles, applications, and challenges.Annu Rev Biomed Eng 2014; 16:295-320.
|
[7] |
Wang S, Wang H, Jiao J, Chen KJ, Owens GE, Kamei K, et al.Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells.Angew Chem Int Ed 2009; 48(47):8970-8973.
|
[8] |
Wurm M, Zeng AP.Mechanical disruption of mammalian cells in a microfluidic system and its numerical analysis based on computational fluid dynamics.Lab Chip 2012; 12(6):1071-1077.
|
[9] |
Frost IM, Mendoza AM, Chiou TT, Kim P, Aizenberg J, Kohn DB, et al.Fluorinated silane-modified filtroporation devices enable gene knockout in human hematopoietic stem and progenitor cells.ACS Appl Mater Interfaces 2023; 15(35):41299-41309.
|
[10] |
Man T, Zhu X, Chow YT, Dawson ER, Wen X, Patananan AN, et al.Intracellular photothermal delivery for suspension cells using sharp nanoscale tips in microwells.ACS Nano 2019; 13(9):10835-10844.
|
[11] |
Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K.Single cell optical transfection.J R Soc Interface 2010; 7(47):863-871.
|
[12] |
Koike S, Jahn R.Probing and manipulating intracellular membrane traffic by microinjection of artificial vesicles.Proc Natl Acad Sci USA 2017; 114(46):E9883-E9892.
|
[13] |
Gao J, Bergmann T, Zhang W, Schiwon M, Ehrke-Schulz E, Ehrhardt A.Viral vector-based delivery of CRISPR/Cas9 and donor DNA for homology-directed repair in an in vitro model for canine hemophilia B.Mol Ther Nucleic Acids 2019; 14:364-376.
|
[14] |
Pereyra AS, Mykhaylyk O, Lockhart EF, Taylor JR, Delbono O, Goya RG, et al.Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells.J Nanomed Nanotechnol 2016; 7(2):364.
|
[15] |
Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, et al.New non-viral method for gene transfer into primary cells.Methods 2004; 33(2):151-163.
|
[16] |
Cui J, Yan Y, Wang Y, Caruso F.Templated assembly of pH-labile polymer-drug particles for intracellular drug delivery.Adv Funct Mater 2012; 22(22):4718-4723.
|
[17] |
Wan ACA, Ying JY.Nanomaterials for in situ cell delivery and tissue regeneration.Adv Drug Deliv Rev 2010; 62(7–8):731-740.
|
[18] |
Zaman NT, Yang YY, Ying JY.Stimuli-responsive polymers for the targeted delivery of paclitaxel to hepatocytes.Nano Today 2010; 5(1):9-14.
|
[19] |
Broaders KE, Grandhe S, Fr JMéchet.A biocompatible oxidation-triggered carrier polymer with potential in therapeutics.J Am Chem Soc 2011; 133(4):756-758.
|
[20] |
Cai W, Chu CC, Liu G, Wang YX.Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging.Small 2015; 11(37):4806-4822.
|
[21] |
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van MA Eijndhoven, Hopmans ES, Lindenberg JL, et al.Functional delivery of viral miRNAs via exosomes.Proc Natl Acad Sci USA 2010; 107(14):6328-6333.
|
[22] |
Wang Z, Rich J, Hao N, Gu Y, Chen C, Yang S, et al.Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation.Microsyst Nanoeng 2022; 8:45.
|
[23] |
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF.In vitro and ex vivo strategies for intracellular delivery.Nature 2016; 538(7624):183-192.
|
[24] |
Lu Y, Sun W, Gu Z.Stimuli-responsive nanomaterials for therapeutic protein delivery.J Controll Release 2014; 194:1-19.
|
[25] |
Doane TL, Burda C.The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy.Chem Soc Rev 2012; 41(7):2885-2911.
|
[26] |
Hassan S, Prakash G, Bal A Ozturk, Saghazadeh S, Sohail MF, Seo J, et al.Evolution and clinical translation of drug delivery nanomaterials.Nano Today 2017; 15:91-106.
|
[27] |
Li J, Cai C, Li J, Li J, Li J, Sun T, et al.Chitosan-based nanomaterials for drug delivery.Molecules 2018; 23(10):2661.
|
[28] |
Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D.Nanomaterial delivery systems for mRNA vaccines.Vaccines 2021; 9(1):65.
|
[29] |
Mahto SK, Yoon TH, Rhee SW.A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology.Biomicrofluidics 2010; 4(3):034111.
|
[30] |
Deng Y, Kizer M, Rada M, Sage J, Wang X, Cheon DJ, et al.Intracellular delivery of nanomaterials via an inertial microfluidic cell hydroporator.Nano Lett 2018; 18(4):2705-2710.
|
[31] |
Hapala I.Breaking the barrier: methods for reversible permeabilization of cellular membranes.Crit Rev Biotechnol 1997; 17(2):105-122.
|
[32] |
Mcneil PL.Incorporation of macromolecules into living cells.Methods Cell Biol 1988; 29:153-173.
|
[33] |
Mead BP, Curley CT, Kim N, Negron K, Garrison WJ, Song J, et al.Focused ultrasound preconditioning for augmented nanoparticle penetration and efficacy in the central nervous system.Small 2019; 15(49):1903460.
|
[34] |
Kinoshita M, Hynynen K.Key factors that affect sonoporation efficiency in in vitro settings: the importance of standing wave in sonoporation.Biochem Biophys Res Commun 2007; 359(4):860-865.
|
[35] |
Zhang P, Rufo J, Chen C, Xia J, Tian Z, Zhang L, et al.Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials.Nat Commun 2021; 12(1):3844.
|
[36] |
Tian Z, Shen C, Li J, Reit E, Bachman H, Socolar JES, et al.Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals.Nat Commun 2020; 11(1):762.
|
[37] |
Bruus H, Dual J, Hawkes J, Hill M, Laurell T, Nilsson J, et al.Forthcoming lab on a chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation.Lab Chip 2011; 11(21):3579-3580.
|
[38] |
Friend J, Yeo LY.Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics.Rev Mod Phys 2011; 83(2):647-704.
|
[39] |
Reboud J, Bourquin Y, Wilson R, Pall GS, Jiwaji M, Pitt AR, et al.Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies.Proc Natl Acad Sci USA 2012; 109(38):15162-15167.
|
[40] |
Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A.Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves.Nat Commun 2015; 6:8686.
|
[41] |
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, et al.Ultrasound-responsive systems as components for smart materials.Chem Rev 2022; 122(5):5165-5208.
|
[42] |
Fan Y, Zhang J, Wei B, Drinkwater BW.Controllable patterns and streaming of plane acoustic vortex with annular piezoelectric arrays excitation.Phys Fluids 2021; 33(3):032009.
|
[43] |
Aghaamoo M, Chen YH, Li X, Garg N, Jiang R, Yun JTH, et al.High-throughput and dosage-controlled intracellular delivery of large cargos by an acoustic–electric micro-vortices platform.Adv Sci 2022; 9(1):2102021.
|
[44] |
Naquin TD, Canning AJ, Gu Y, Chen J, Naquin CM, Xia J, et al.Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx.Sci Adv 2024; 10(10):eadm8597.
|
[45] |
Yang S, Rufo J, Zhong R, Rich J, Wang Z, Lee LP, et al.Acoustic tweezers for high-throughput single-cell analysis.Nat Protoc 2023; 18(8):2441-2458.
|
[46] |
Yang S, Tian Z, Wang Z, Rufo J, Li P, Mai J, et al.Harmonic acoustics for dynamic and selective particle manipulation.Nat Mater 2022; 21(5):540-546.
|
[47] |
Rufo J, Zhang P, Zhong R, Lee LP, Huang TJ.A sound approach to advancing healthcare systems: the future of biomedical acoustics.Nat Commun 2022; 13(1):3459.
|
[48] |
Rufo J, Cai F, Friend J, Wiklund M, Huang TJ.Acoustofluidics for biomedical applications.Nat Rev Method Prim 2022; 2(1):30.
|
[49] |
Gu Y, Chen C, Mao Z, Bachman H, Becker R, Rufo J, et al.Acoustofluidic centrifuge for nanoparticle enrichment and separation.Sci Adv 2021; 7(1):eabc0467.
|
[50] |
Zhang P, Bachman H, Ozcelik A, Huang TJ.Acoustic microfluidics.Annu Rev Anal Chem 2020; 13(1):17-43.
|
[51] |
Rich J, Tian Z, Huang TJ.Sonoporation: past, present, and future.Adv Mater Technol 2022; 7(1):2100885.
|
[52] |
Ramesan S, Rezk AR, Dekiwadia C, Cortez-Jugo C, Yeo LY.Acoustically-mediated intracellular delivery.Nanoscale 2018; 10(27):13165-13178.
|
[53] |
Li X, Sun W, Fu W, Lv H, Zu X, Guo Y, et al.Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors.J Mater Chem A 2023; 11(17):9216-9238.
|
[54] |
Gong Z, Baudoin M.Three-dimensional trapping and dynamic axial manipulation with frequency-tuned spiraling acoustical tweezers: a theoretical study.Phys Rev Appl 2021; 16(2):024034.
|
[55] |
Zhang Z, Wang Y, Zhang H, Tang Z, Liu W, Lu Y, et al.Hypersonic poration: a new versatile cell poration method to enhance cellular uptake using a piezoelectric nano-electromechanical device.Small 2017; 13(18):1602962.
|
[56] |
Belling JN, Heidenreich LK, Tian Z, Mendoza AM, Chiou TT, Gong Y, et al.Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells.Proc Natl Acad Sci USA 2020; 117(20):10976-10982.
|
[57] |
Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E, et al.A vector-free microfluidic platform for intracellular delivery.Proc Natl Acad Sci USA 2013; 110(6):2082-2087.
|
[58] |
Kang G, Carlson DW, Kang TH, Lee S, Haward SJ, Choi I, et al.Intracellular nanomaterial delivery via spiral hydroporation.ACS Nano 2020; 14(3):3048-3058.
|
[59] |
Zhang Y, Yu J, Bomba HN, Zhu Y, Gu Z.Mechanical force-triggered drug delivery.Chem Rev 2016; 116(19):12536-12563.
|
[60] |
Fu YQ, Luo JK, Nguyen NT, Walton AJ, Flewitt AJ, Zu XT, et al.Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications.Prog Mater Sci 2017; 89:31-91.
|
[61] |
Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, et al.One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery.J Am Chem Soc 2016; 138(3):962-968.
|
[62] |
Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, et al.Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules.Nat Commun 2015; 6:7240.
|
[63] |
Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, et al.Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework.J Am Chem Soc 2018; 140(1):143-146.
|
[64] |
Garofalo F, Laurell T, Bruus H.Performance study of acoustophoretic microfluidic silicon-glass devices by characterization of material- and geometry-dependent frequency spectra.Phys Rev Appl 2017; 7(5):054026.
|
[65] |
Chen WH, Luo GF, Vázquez-González M, Cazelles R, Sohn YS, Nechushtai R, et al.Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers.ACS Nano 2018; 12(8):7538-7545.
|
[66] |
Liang Z, Yang Z, Yuan H, Wang C, Qi J, Liu K, et al.A protein@metal-organic framework nanocomposite for pH-triggered anticancer drug delivery.Dalton Trans 2018; 47(30):10223-10228.
|
[67] |
Chen TT, Yi JT, Zhao YY, Chu X.Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins.J Am Chem Soc 2018; 140(31):9912-9920.
|
[68] |
Ren H, Zhang L, An J, Wang T, Li L, Si X, et al.Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release.Chem Commun 2014; 50(8):1000-1002.
|
[69] |
Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ.Microfluidic cell stretching for highly effective gene delivery into hard-to-transfect primary cells.ACS Nano 2020; 14(11):15094-15106.
|
[70] |
Yaghoubi A, Ramazani A.Anticancer DOX delivery system based on CNTs: functionalization, targeting and novel technologies.J Control Release 2020; 327:198-224.
|
[71] |
Miller DL, Quddus J.Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies.Ultrasound Med Biol 2000; 26(4):661-667.
|
[72] |
Carugo D, Ankrett DN, Glynne-Jones P, Capretto L, Boltryk RJ, Zhang X, et al.Contrast agent-free sonoporation: the use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents.Biomicrofluidics 2011; 5(4):044108.
|