[1] | Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR.Head and neck squamous cell carcinoma.Nat Rev Dis Primers 2020; 6:92. |
[2] | Leemans CR, Snijders PJF, Brakenhoff RH.The molecular landscape of head and neck cancer.Nat Rev Cancer 2018; 18(5):269-282. |
[3] | Rapp CT, Chera BS, Morris CG, Amdur RJ, Kirwan JM, Mendenhall WM.Radiation treatment of soft palate squamous cell carcinoma.Head Neck 2020; 42(3):530-538. |
[4] | Li X, Wang C, Zhang H, Li Y, Hou D, Liu D, et al.circFNDC3B accelerates vasculature formation and metastasis in oral squamous cell carcinoma.Cancer Res 2023; 83(9):1459-1475. |
[5] | Gu Z, Yao Y, Yang G, Zhu G, Tian Z, Wang R, et al.Pharmacogenomic landscape of head and neck squamous cell carcinoma informs precision oncology therapy.Sci Transl Med 2022;14(661):eabo5987. |
[6] | Vos JL, Elbers JBW, Krijgsman O, Traets JJH, Qiao X, van AM der Leun, et al.Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma.Nat Commun 2021; 12(1):7348. |
[7] | Cillo AR, Kürten CHL, Tabib T, Qi Z, Onkar S, Wang T, et al.Immune landscape of viral- and carcinogen-driven head and neck cancer. |
[8] | Bergers G, Fendt SM.The metabolism of cancer cells during metastasis.Nat Rev Cancer 2021; 21(3):162-180. |
[9] | Xiao Y, Yu T, Xu Y, Ding R, Wang Y, Jiang Y, et al.Emerging therapies in cancer metabolism.Cell Metab 2023; 35(8):1283-1303. |
[10] | Teicher BA, Linehan WM, Helman LJ.Targeting cancer metabolism.Clin Cancer Res 2012; 18(20):5537-5545. |
[11] | Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, et al.Lactate supports a metabolic-epigenetic link in macrophage polarization.Sci Adv 2021;7(46):eabi8602. |
[12] | Liu Y, Yang C.Oncometabolites in cancer: Current understanding and challenges.Cancer Res 2021; 81(11):2820-2823. |
[13] | Elia I, Haigis MC.Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism.Nat Metab 2021; 3(1):21-32. |
[14] | Xu C, Luo Y, Li S, Li Z, Jiang L, Zhang G, et al.Multifunctional neuron-specific enolase: its role in lung diseases.Biosci Rep 2019;39(11):BS R20192732. |
[15] | Zheng Y, Wu C, Yang J, Zhao Y, Jia H, Xue M, et al.Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer.Signal Transduct Target Ther 2020; 5(1):53. |
[16] | Sun C, Liu M, Zhang W, Wang S, Qian G, Wang M, et al.Overexpression of enolase 2 is associated with worsened prognosis and increased glycolysis in papillary renal cell carcinoma.J Cell Physiol 2021; 236(5):3821-3831. |
[17] | Lv C, Yu H, Wang K, Chen C, Tang J, Han F, et al.ENO2 promotes colorectal cancer metastasis by interacting with the lncRNA CYTOR and activating YAP1-induced EMT.Cells 2022; 11(15):2363. |
[18] | Zha Z, Li D, Zhang P, Wang P, Fang X, Liu X, et al.Neuron specific enolase promotes tumor metastasis by activating the Wnt/β-catenin pathway in small cell lung cancer.Transl Oncol 2021; 14(4):101039. |
[19] | Gao L, Yang F, Tang D, Xu Z, Tang Y, Yang D, et al.Mediation of PKM2-dependent glycolytic and non-glycolytic pathways by ENO2 in head and neck cancer development.J Exp Clin Cancer Res 2023; 42(1):1. |
[20] | Wang C, Huang M, Lin Y, Zhang Y, Pan J, Jiang C, et al.ENO2-derived phosphoenolpyruvate functions as an endogenous inhibitor of HDAC1 and confers resistance to antiangiogenic therapy.Nat Metab 2023; 5(10):1765-1786. |
[21] | Huang TY, Hirota M, Sasaki D, Kalra RS, Chien HC, Tamai M, et al.Phosphoenolpyruvate regulates the Th17 transcriptional program and inhibits autoimmunity.Cell Rep 2023; 42(3):112205. |
[22] | Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al.Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses.Cell 2015; 162(6):1217-1228. |
[23] | Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al.Metabolic regulation of gene expression by histone lactylation.Nature 2019; 574(7779):575-580. |
[24] | Komal S, Han S, Cui L, Zhai M, Zhou Y, Wang P, et al.Epigenetic regulation of macrophage polarization in cardiovascular diseases.Pharmaceuticals (Basel) 2023; 16(2):141. |
[25] | Huang YH, Cai K, Xu PP, Wang L, Huang CX, Fang Y, et al.CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis.Signal Transduct Target Ther 2021; 6(1):10. |
[26] | Chu YB, Li J, Jia P, Cui J, Zhang R, Kang X, et al.Irf1- and Egr1-activated transcription plays a key role in macrophage polarization: A multiomics sequencing study with partial validation.Int Immunopharmacol 2021; 99:108072. |
[27] | Moreno-Yruela C, Zhang D, Wei W, B?k M, Liu W, Gao J, et al.Class I histone deacetylases (HDAC1-3) are histone lysine delactylases.Sci Adv 2022;8(3):eabi6696. |
[28] | Valero C, Golkaram M, Vos JL, Xu B, Fitzgerald C, Lee M, et al.Clinical-genomic determinants of immune checkpoint blockade response in head and neck squamous cell carcinoma.J Clin Invest 2023; 133(19):e169823. |
[29] | Chaudhary S, Ganguly K, Muniyan S, Pothuraju R, Sayed Z, Jones DT, et al.Immunometabolic alterations by HPV infection: New dimensions to head and neck cancer disparity.J Natl Cancer Inst 2019; 111(3):233-244. |
[30] | Oliveira G, Egloff AM, Afeyan AB, Wolff JO, Zeng Z, Chernock RD, et al.Preexisting tumor-resident T cells with cytotoxic potential associate with response to neoadjuvant anti-PD-1 in head and neck cancer.Sci Immunol 2023;8(87):eadf4968. |
[31] | Fasano M, Corte CMD, Liello RD, Viscardi G, Sparano F, Iacovino ML, et al.Immunotherapy for head and neck cancer: Present and future.Crit Rev Oncol Hematol 2022; 174:103679. |
[32] | Zhang C, Zhang K, Gu J, Ge D.ENO1 promotes antitumor immunity by destabilizing PD-L1 in NSCLC.Cell Mol Immunol 2021; 18(8):2045-2047. |
[33] | Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F, et al.Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis.Cell Death Differ 2022; 29(1):133-146. |
[34] | Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, et al.Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor.Mol Cell 2020;77(2):213–27.e5. |
[35] | Murray PJ.Macrophage polarization.Annu Rev Physiol 2017; 79:541-566. |
[36] | Zhao Y, Jiang J, Zhou P, Deng K, Liu Z, Yang M, et al.H3K18 lactylation-mediated VCAM1 expression promotes gastric cancer progression and metastasis via AKT-mTOR-CXCL1 axis.Biochem Pharmacol 2024; 222:116120. |
[37] | Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, et al.Histone lactylation boosts reparative gene activation post-myocardial infarction.Circ Res 2022; 131(11):893-908. |
[38] | Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, et al.Macrophages in immunoregulation and therapeutics.Signal Transduct Target Ther 2023; 8(1):207. |
[39] | Rho H, Terry AR, Chronis C, Hay N.Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis.Cell Metab 2023;35(8):1406–23.e8. |
[40] | Gadwa J, Amann M, Bickett TE, Knitz MW, Darragh LB, Piper M, et al.Selective targeting of IL2Rβγ combined with radiotherapy triggers CD8- and NK-mediated immunity, abrogating metastasis in HNSCC.Cell Rep Med 2023; 4(8):101150. |
[41] | Lin YH, Satani N, Hammoudi N, Yan VC, Barekatain Y, Khadka S, et al.An enolase inhibitor for the targeted treatment of ENO1-deleted cancers.Nat Metab 2020; 2(12):1413-1426. |