自由活动动物皮质内神经接口技术与应用最新进展

Xinxia Cai, Zhaojie Xu, Jingquan Liu, Robert Wang, Yirong Wu

工程(英文) ›› 2025, Vol. 44 ›› Issue (1) : 73-86.

PDF(2677 KB)
PDF(2677 KB)
工程(英文) ›› 2025, Vol. 44 ›› Issue (1) : 73-86. DOI: 10.1016/j.eng.2024.12.012
研究论文
Review

自由活动动物皮质内神经接口技术与应用最新进展

作者信息 +

Recent Advances in Intracortical Neural Interfaces for Freely Moving Animals: Technologies and Applications

Author information +
History +

Abstract

Intracortical neural interfaces directly connect brain neurons with external devices to achieve high temporal resolution and spatially precise sampling of neural activity. When applied to freely moving animals, this technology provides in-depth insight into the underlying neural mechanisms for their movement and cognition in real-world scenarios. However, the application of implanted devices in freely moving animals is limited by restrictions on their behavioral freedom and physiologic impact. In this paper, four technological directions for ideal implantable neural interface devices are analyzed: higher spatial density, improved biocompatibility, enhanced multimodal detection of electrical/neurotransmitter signals, and more effective neural modulation. Finally, we discuss how these technological developments have been applied to freely moving animals to provide better insight into neuroscience and clinical medicine.

Keywords

Intracortical neural interfaces / Freely moving animals / Microelectrode array / Neurotransmitter

引用本文

导出引用
Xinxia Cai, Zhaojie Xu, Jingquan Liu. 自由活动动物皮质内神经接口技术与应用最新进展. Engineering. 2025, 44(1): 73-86 https://doi.org/10.1016/j.eng.2024.12.012

参考文献

[1]
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 2012; 13(6):407-420.
[2]
Tang X, Shen H, Zhao S, Li N, Liu J. Flexible brain–computer interfaces. Nat Electron 2023; 6(2):109-118.
[3]
Wightman RM. Probing cellular chemistry in biological systems with microelectrodes. Science 2006; 311(5767):1570-1574.
[4]
Wu F, Stark E, Ku PC, Wise KD, Buzsaki G, Yoon E. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 2015; 88(6):1136-1148.
[5]
Buzsáki G, Moser EI. Memory, navigation and theta rhythm in the hippocampal–entorhinal system. Nat Neurosci 2013; 16(2):130-138.
[6]
Hubel DH. Tungsten microelectrode for recording from single units. Science 1957; 125(3247):549-550.
[7]
Stevenson IH, Kording KP. How advances in neural recording affect data analysis. Nat Neurosci 2011; 14(2):139-142.
[8]
Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 1991; 38(8):758-768.
[9]
Wise KD, Angell JB, Starr A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng 1970;BM E-17(3):238–47.
[10]
Kipke DR, Vetter RJ, Williams JC, Hetke JF. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans Neural Syst Rehabil Eng 2003; 11(2):151-155.
[11]
Wark HAC, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B, et al. A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng 2013; 10(4):045003.
[12]
Shandhi MMH, Negi S. Fabrication of out-of-plane high channel density microelectrode neural array with 3D recording and stimulation capabilities. J Microelectromech Syst 2020; 29(4):522-531.
[13]
Losero E, Jagannath S, Pezzoli M, Goblot V, Babashah H, Lashuel HA, et al. Neuronal growth on high-aspect-ratio diamond nanopillar arrays for biosensing applications. Sci Rep 2023; 13(1):5909.
[14]
Zardini AS, Rostami B, Najafi K, Hetrick VL, Ahmed OJ. Sea of electrodes array (SEA): extremely dense and high-count silicon-based electrode array technology for high-resolution high-bandwidth interfacing with 3D neural structures. 2021. bio Rxiv: 2021.01.24.427975.
[15]
Xiao G, Zhang Y, Xu S, Song Y, Dai Y, Li X, et al. High resolution functional localization of epileptogenic focus with glutamate and electrical signals detection by ultramicroelectrode arrays. Sens Actuators B 2020; 317:128137.
[16]
Du J, Blanche TJ, Harrison RR, Lester HA, Masmanidis SC. Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS One 2011; 6(10):e26204.
[17]
Scholvin J, Kinney JP, Bernstein JG, Moore-Kochlacs C, Kopell N, Fonstad CG, et al. Close-packed silicon microelectrodes for scalable spatially oversampled neural recording. IEEE Trans Biomed Eng 2016; 63(1):120-130.
[18]
Scholten K, Larson CE, Xu H, Song D, Meng E. A 512-channel multi-layer polymer-based neural probe array. J Microelectromech Syst 2020; 29(5):1054-1058.
[19]
Rios G, Lubenov EV, Chi D, Roukes ML, Siapas AG. Nanofabricated neural probes for dense 3-D recordings of brain activity. Nano Lett 2016; 16(11):6857-6862.
[20]
Wang L, Ge C, Wang F, Guo Z, Hong W, Jiang C, et al. Dense packed drivable optrode array for precise optical stimulation and neural recording in multiple-brain regions. ACS Sens 2021; 6(11):4126-4135.
[21]
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7(4):424-442.
[22]
Guo C, Wang A, Cheng H, Chen L. New imaging instrument in animal models: two-photon miniature microscope and large field of view miniature microscope for freely behaving animals. J Neurochem 2023; 164(3):270-283.
[23]
Mohseni P, Najafi K, Eliades SJ, Wang X. Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Trans Neural Syst Rehabil Eng 2005; 13(3):263-271.
[24]
Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017; 551(7679):232-236.
[25]
Obaid A, Hanna ME, Wu YW, Kollo M, Racz R, Angle MR, et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci Adv 2020; 6(12):eaay2789.
[26]
Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 2021; 372(6539):eabf4588.
[27]
Park SY, Na K, Vöröslakos M, Song H, Slager N, Oh S, et al. A miniaturized 256-channel neural recording interface with area-efficient hybrid integration of flexible probes and CMOS integrated circuits. IEEE Trans Biomed Eng 2022; 69(1):334-346.
[28]
Yoshimoto S, Araki T, Uemura T, Nezu T, Sekitani T, Suzuki T, et al. Implantable wireless 64-channel system with flexible ECoG electrode and optogenetics probe. In: Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS); 2016 Oct 17–19; Shanghai, China. Piscataway: IEEE; 2016. p. 476–9.
[29]
Csicsvari J, Henze DA, Jamieson B, Harris KD, Sirota A, Barthó P, et al. Massively parallel recording of unit and local field potentials with silicon-based electrodes. J Neurophysiol 2003; 90(2):1314-1323.
[30]
Olsson RH, Wise KD. A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid-State Circuits 2005; 40(12):2796-2804.
[31]
De D Dorigo, Moranz C, Graf H, Marx M, Wendler D, Shui B, et al. Fully immersible subcortical neural probes with modular architecture and a delta-sigma ADC integrated under each electrode for parallel readout of 144 recording sites. IEEE J Solid-State Circuits 2018; 53(11):3111-3125.
[32]
Marblestone AH, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR, Glaser JI, et al. Physical principles for scalable neural recording. Front Comput Neurosci 2013; 7:137.
[33]
Raducanu BC, Yazicioglu RF, Lopez CM, Ballini M, Putzeys J, Wang S, et al. Time multiplexed active neural probe with 1356 parallel recording sites. Sensors 2017; 17(10):2388.
[34]
Diehl GW, Hon OJ, Leutgeb S, Leutgeb JK. Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. Neuron 2017; 94(1):83-92.
[35]
Waaga T, Agmon H, Normand VA, Nagelhus A, Gardner RJ, Moser MB, et al. Grid-cell modules remain coordinated when neural activity is dissociated from external sensory cues. Neuron 2022; 110(11):1843-1856.
[36]
Leonard MK, Gwilliams L, Sellers KK, Chung JE, Xu D, Mischler G, et al. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature 2024; 626(7999):593-602.
[37]
Ruff DA, Cohen MR. Stimulus dependence of correlated variability across cortical areas. J Neurosci 2016; 36(28):7546-7556.
[38]
Lee H, Bellamkonda RV, Sun W, Levenston ME. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J Neural Eng 2005; 2(4):81-89.
[39]
Nowinski WL. Evolution of human brain atlases in terms of content, applications, functionality, and availability. Neuroinformatics 2021; 19(1):1-22.
[40]
Zappalá S, Bennion NJ, Potts MR, Wu J, Kusmia S, Jones DK, et al. Full-field MRI measurements of in-vivo positional brain shift reveal the significance of intra-cranial geometry and head orientation for stereotactic surgery. Sci Rep 2021; 11(1):17684.
[41]
Gilletti A, Muthuswamy J. Brain micromotion around implants in the rodent somatosensory cortex. J Neural Eng 2006; 3(3):189-195.
[42]
Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005; 148(1):1-18.
[43]
Lee HC, Ejserholm F, Gaire J, Currlin S, Schouenborg J, Wallman L, et al. Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response?. J Neural Eng 2017; 14(3):036026.
[44]
Köhler P, Wolff A, Ejserholm F, Wallman L, Schouenborg J, Linsmeier CE. Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants. PLoS One 2015; 10(3):e0119340.
[45]
Cheung KC, Renaud P, Tanila H, Djupsund K. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 2007; 22(8):1783-1790.
[46]
Guo Z, Wang F, Wang L, Tu K, Jiang C, Xi Y, et al. A flexible neural implant with ultrathin substrate for low-invasive brain–computer interface applications. Microsyst Nanoeng 2022; 8(1):133.
[47]
Srikantharajah K, Medinaceli R Quintela, Doerenkamp K, Kampa BM, Musall S, Rothermel M, et al. Minimally-invasive insertion strategy and in vivo evaluation of multi-shank flexible intracortical probes. Sci Rep 2021; 11(1):18920.
[48]
Ji B, Sun F, Guo J, Zhou Y, You X, Fan Y, et al. Brainmask: an ultrasoft and moist micro-electrocorticography electrode for accurate positioning and long-lasting recordings. Microsyst Nanoeng 2023; 9(1):126.
[49]
Ryu J, Qiang Y, Chen L, Li G, Han X, Woon E, et al. Multifunctional nanomesh enables cellular-resolution, elastic neuroelectronics. Adv Mater 2024; 36(36):2403141.
[50]
Li X, Song Y, Xiao G, He E, Xie J, Dai Y, et al. PDMS–parylene hybrid, flexible micro-ECoG electrode array for spatiotemporal mapping of epileptic electrophysiological activity from multicortical brain regions. ACS Appl Bio Mater 2021; 4(11):8013-8022.
[51]
Graudejus O, Barton C, Ponce RD Wong, Rowan CC, Oswalt D, Greger B. A soft and stretchable bilayer electrode array with independent functional layers for the next generation of brain machine interfaces. J Neural Eng 2020; 17(5):056023.
[52]
Guan S, Wang J, Gu X, Zhao Y, Hou R, Fan H, et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci Adv 2019; 5(3):eaav2842.
[53]
Thielen B, Meng E. Characterization of thin film parylene C device curvature and the formation of helices via thermoforming. J Micromech Microeng 2023; 33(9):095007.
[54]
Zhao S, Tang X, Tian W, Partarrieu S, Liu R, Shen H, et al. Tracking neural activity from the same cells during the entire adult life of mice. Nat Neurosci 2023; 26(4):696-710.
[55]
Liu Y, Jia H, Sun H, Jia S, Yang Z, Li A, et al. A high-density 1024-channel probe for brain-wide recordings in non-human primates. Nat Neurosci 2024; 27(8):1620-1631.
[56]
Luan L, Wei X, Zhao Z, Siegel JJ, Potnis O, Tuppen CA, et al. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci Adv 2017; 3(2):e1601966.
[57]
Zhao Z, Zhu H, Li X, Sun L, He F, Chung JE, et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat Biomed Eng 2023; 7(4):520-532.
[58]
Chung JE, Joo HR, Fan JL, Liu DF, Barnett AH, Chen S, et al. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 2019; 101(1):21-31.
[59]
Guan S, Tian H, Yang Y, Liu M, Ding J, Wang J, et al. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation. Nat Protoc 2023; 18(6):1712-1744.
[60]
Cui Y, Zhang F, Chen G, Yao L, Zhang N, Liu Z, et al. A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Adv Mater 2021; 33(34):2100221.
[61]
Zhou Y, Gu C, Liang J, Zhang B, Yang H, Zhou Z, et al. A silk-based self-adaptive flexible opto–electro neural probe. Microsyst Nanoeng 2022; 8(1):118.
[62]
Yi J, Zou G, Huang J, Ren X, Tian Q, Yu Q, et al. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 2023; 624(7991):295-302.
[63]
Liu J, Fu TM, Cheng Z, Hong G, Zhou T, Jin L, et al. Syringe-injectable electronics. Nat Nanotechnol 2015; 10(7):629-636.
[64]
Fu TM, Hong G, Zhou T, Schuhmann TG, Viveros RD, Lieber CM. Stable long-term chronic brain mapping at the single-neuron level. Nat Methods 2016; 13(10):875-882.
[65]
Yang X, Zhou T, Zwang TJ, Hong G, Zhao Y, Viveros RD, et al. Bioinspired neuron-like electronics. Nat Mater 2019; 18(5):510-517.
[66]
Zhang A, Mandeville ET, Xu L, Stary CM, Lo EH, Lieber CM. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 2023; 381(6655):306-312.
[67]
Green RA, Hassarati RT, Goding JA, Baek S, Lovell NH, Martens PJ, et al. Conductive hydrogels: mechanically robust hybrids for use as biomaterials. Macromol Biosci 2012; 12(4):494-501.
[68]
Zhang J, Wang L, Xue Y, Lei IM, Chen X, Zhang P, et al. Engineering electrodes with robust conducting hydrogel coating for neural recording and modulation. Adv Mater 2023; 35(3):2209324.
[69]
De S Faveri, Maggiolini E, Miele E, De F Angelis, Cesca F, Benfenati F, et al. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Front Neuroeng 2014; 7:7.
[70]
Yang G, Wang Y, Mo F, Xu Z, Lu B, Fan P, et al. PEDOT-citrate/SIKVAV modified bioaffinity microelectrode arrays for detecting theta rhythm cells in the retrosplenial cortex of rats under sensory conflict. Sens Actuators B 2024; 399:134802.
[71]
Sridharan A, Nguyen JK, Capadona JR, Muthuswamy J. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo. J Neural Eng 2015; 12(3):036002.
[72]
Spencer KC, Sy JC, Ramadi KB, Graybiel AM, Langer R, Cima MJ. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci Rep 2017; 7(1):1952.
[73]
Lee Y, Shin H, Lee D, Choi S, Cho IJ, Seo J. A lubricated nonimmunogenic neural probe for acute insertion trauma minimization and long-term signal recording. Adv Sci 2021; 8(15):2100231.
[74]
Chapman CAR, Cuttaz EA, Goding JA, Green RA. Actively controlled local drug delivery using conductive polymer-based devices. Appl Phys Lett 2020; 116(1):010501.
[75]
Caves JM, Cui W, Wen J, Kumar VA, Haller CA, Chaikof EL. Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials 2011; 32(23):5371-5379.
[76]
Wang Y, Han M, Jing L, Jia Q, Lv S, Xu Z, et al. Enhanced neural activity detection with microelectrode arrays modified by drug-loaded calcium alginate/chitosan hydrogel. Biosens Bioelectron 2025; 267:116837.
[77]
Boehler C, Kleber C, Martini N, Xie Y, Dryg I, Stieglitz T, et al. Actively controlled release of dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 2017; 129:176-187.
[78]
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, et al. A materials roadmap to functional neural interface design. Adv Funct Mater 2018; 28(12):1701269.
[79]
Liu S, Wang Y, Zhao Y, Liu L, Sun S, Zhang S, et al. A nanozyme-based electrode for high-performance neural recording. Adv Mater 2024; 36(6):2304297.
[80]
Xu Z, Mo F, Yang G, Fan P, Wang Y, Lu B, et al. Grid cell remapping under three-dimensional object and social landmarks detected by implantable microelectrode arrays for the medial entorhinal cortex. Microsyst Nanoeng 2022; 8(1):104.
[81]
Cointe C, Laborde A, Nowak LG, Arvanitis DN, Bourrier D, Bergaud C, et al. Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer. Microsyst Nanoeng 2022; 8:21.
[82]
Yang X, Pei W, Wei C, Yang X, Zhang H, Wang Y, et al. Chemical polymerization of conducting polymer poly(3,4-ethylenedioxythiophene) onto neural microelectrodes. Sens Actuators A 2023; 349:114022.
[83]
He E, Xu S, Dai Y, Wang Y, Xiao G, Xie J, et al. SWCNTs/PEDOT:PSS-modified microelectrode arrays for dual-mode detection of electrophysiological signals and dopamine concentration in the striatum under isoflurane anesthesia. ACS Sens 2021; 6(9):3377-3386.
[84]
Zhao Z, Gong R, Zheng L, Wang J. In vivo neural recording and electrochemical performance of microelectrode arrays modified by rough-surfaced AuPt alloy nanoparticles with nanoporosity. Sensors 2016; 16(11):1851.
[85]
Wang L, Xi Y, Xu Q, Jiang C, Cao J, Wang X, et al. Multifunctional IrOx neural probe for in situ dynamic brain hypoxia evaluation. ACS Nano 2023; 17(22):22277-22286.
[86]
He E, Zhou Y, Luo J, Xu S, Zhang K, Song Y, et al. Sensitive detection of electrophysiology and dopamine vesicular exocytosis of hESC-derived dopaminergic neurons using multifunctional microelectrode array. Biosens Bioelectron 2022; 209:114263.
[87]
Wang MH, Ji BW, Gu XW, Tian HC, Kang XY, Yang B, et al. Direct electrodeposition of graphene enhanced conductive polymer on microelectrode for biosensing application. Biosens Bioelectron 2018; 99:99-107.
[88]
Teixeira H, Dias C, Aguiar P, Ventura J. Gold-mushroom microelectrode arrays and the quest for intracellular-like recordings: perspectives and outlooks. Adv Mater Technol 2021; 6(2):2000770.
[89]
Zhang K, Liu Y, Song Y, Xu S, Yang Y, Jiang L, et al. Exploring retinal ganglion cells encoding to multi-modal stimulation using 3D microelectrodes arrays. Front Bioeng Biotechnol 2023; 11:1245082.
[90]
Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of social interaction behaviors. J Vis Exp 2011; 48:e2473.
[91]
Curry EJ, Ke K, Chorsi MT, Wrobel KS, Miller AN, Patel A, et al. Biodegradable piezoelectric force sensor. Proc Natl Acad Sci USA 2018; 115(5):909-914.
[92]
Zhou Y, Yang H, Wang X, Yang H, Sun K, Zhou Z, et al. A mosquito mouthpart-like bionic neural probe. Microsyst Nanoeng 2023; 9:88.
[93]
Venton BJ, Michael DJ, Wightman RM. Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate–putamen. J Neurochem 2003; 84(2):373-381.
[94]
Caruso L, Wunderle T, Lewis CM, Valadeiro J, Trauchessec V, Trejo J Rosillo, et al. In vivo magnetic recording of neuronal activity. Neuron 2017; 95(6):1283-1291.
[95]
Chopin C, Torrejon J, Solignac A, Fermon C, Jendritza P, Fries P, et al. Magnetoresistive sensor in two-dimension on a 25 μm thick silicon substrate for in vivo neuronal measurements. ACS Sens 2020; 5(11):3493-3500.
[96]
Wu X, Yang X, Song L, Wang Y, Li Y, Liu Y, et al. A modified miniscope system for simultaneous electrophysiology and calcium imaging in vivo. Front Integr Nuerosci 2021; 15:682019.
[97]
Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. Nat Rev Bioeng 2023; 1(5):346-360.
[98]
Adams RN. Probing brain chemistry with electroanalytical techniques. Anal Chem 1976; 48(14):1126A-1138A.
[99]
Bucher ES, Wightman RM. Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem 2015; 8:239-261.
[100]
Rafiee M, Abrams DJ, Cardinale L, Goss Z, Romero-Arenas A, Stahl SS. Cyclic voltammetry and chronoamperometry: mechanistic tools for organic electrosynthesis. Chem Soc Rev 2024; 53(2):566-585.
[101]
Castagnola E, Vahidi NW, Nimbalkar S, Rudraraju S, Thielk M, Zucchini E, et al. In vivo dopamine detection and single unit recordings using intracortical glassy carbon microelectrode arrays. MRS Adv 2018; 3(29):1629-1634.
[102]
Fox ME, Wightman RM. Contrasting regulation of catecholamine neurotransmission in the behaving brain: pharmacological insights from an electrochemical perspective. Pharmacol Rev 2017; 69(1):12-32.
[103]
Schwerdt HN, Zhang E, Kim MJ, Yoshida T, Stanwicks L, Amemori S, et al. Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model. Commun Biol 2018; 1(1):144.
[104]
Castagnola E, Thongpang S, Hirabayashi M, Nava G, Nimbalkar S, Nguyen T, et al. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry. Analyst 2021; 146(12):3955-3970.
[105]
Keighron JD, Wigström J, Kurczy ME, Bergman J, Wang Y, Cans AS. Amperometric detection of single vesicle acetylcholine release events from an artificial cell. ACS Chem Neurosci 2015; 6(1):181-188.
[106]
Johnson MD, Franklin RK, Gibson MD, Brown RB, Kipke DR. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. J Neurosci Methods 2008; 174(1):62-70.
[107]
Cheer JF, Heien MLAV, Garris PA, Carelli RM, Wightman RM. Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. Proc Natl Acad Sci USA 2005; 102(52):19150-19155.
[108]
Tolosa VM, Wassum KM, Maidment NT, Monbouquette HG. Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode arraymicroprobe. Biosens Bioelectron 2013; 42:256-260.
[109]
Fan B, Rusinek CA, Thompson CH, Setien M, Guo Y, Rechenberg R, et al. Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing. Microsyst Nanoeng 2020; 6(1):42.
[110]
Sarbapalli D, Mishra A, Rodriguez-Lopez J. Pt/polypyrrole quasi-references revisited: robustness and application in electrochemical energy storage research. Anal Chem 2021; 93(42):14048-14052.
[111]
Wang L, Wang F, Guo Z, Xi Y, Yang B, Liu J. Dual mode neural probe with enhanced microstructure for neural stimulation and recording. In: Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers); 2021 Jun 20–24; Orlando, F L, US A. Piscataway: IEE E; 2021. p. 747–50.
[112]
Mo F, Kong F, Yang G, Xu Z, Liang W, Liu J, et al. Integrated three-electrode dual-mode detection chip for place cell analysis: dopamine facilitates the role of place cells in encoding spatial locations of novel environments and rewards. ACS Sens 2023; 8(12):4765-4773.
[113]
Azzouz A, Goud KY, Raza N, Ballesteros E, Lee SE, Hong J, et al. Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. TrAc Trends Anal Chem 2019; 110:15-34.
[114]
Li J, Liu Y, Yuan L, Zhang B, Bishop ES, Wang K, et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 2022; 606(7912):94-101.
[115]
Hashemi P, Dankoski EC, Petrovic J, Keithley RB, Wightman RM. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal Chem 2009; 81(22):9462-9471.
[116]
Sun D, Li H, Li M, Li C, Dai H, Sun D, et al. Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sens Actuators B 2018; 259:433-442.
[117]
Xie J, Dai Y, Xing Y, Wang Y, Yang G, He E, et al. PtNPs/rGO-GluOx/mPD directionally electroplated dual-mode microelectrode arrays for detecting the synergistic relationship between the cortex and hippocampus of epileptic rats. ACS Sens 2023; 8(4):1810-1818.
[118]
Burmeister JJ, Price DA, Pomerleau F, Huettl P, Quintero JE, Gerhardt GA. Challenges of simultaneous measurements of brain extracellular GABA and glutamate in vivo using enzyme-coated microelectrode arrays. J Neurosci Methods 2020; 329:108435.
[119]
Zhao C, Cheung KM, Huang IW, Yang H, Nakatsuka N, Liu W, et al. Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci Adv 2021; 7(48):eabj7422.
[120]
Lee JH, Chae EJ, Park S, Choi JW. Label-free detection of γ-aminobutyric acid based on silicon nanowire biosensor. Nano Converg 2019; 6(1):13.
[121]
Xiao G, Xu S, Song Y, Zhang Y, Li Z, Gao F, et al. In situ detection of neurotransmitters and epileptiform electrophysiology activity in awake mice brains using a nanocomposites modified microelectrode array. Sens Actuators B 2019; 288:601-610.
[122]
Bounegru AV, Apetrei C. Tyrosinase immobilization strategies for the development of electrochemical biosensors—a review. Nanomaterials 2023; 13(4):760.
[123]
Hu Z, Li Y, Figueroa-Miranda G, Musall S, Li H, Martínez-Roque MA, et al. Aptamer based biosensor platforms for neurotransmitters analysis. TrAc Trends Anal Chem 2023; 162:117021.
[124]
Jamal M, Hasan M, Mathewson A, Razeeb KM. Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate. Biosens Bioelectron 2013; 40(1):213-218.
[125]
Hussain MM, Rahman MM, Asiri AM, Awual MR. Non-enzymatic simultaneous detection of L-glutamic acid and uric acid using mesoporous Co3O4 nanosheets. RSC Adv 2016; 6(84):80511-80521.
[126]
Heli H, Hajjizadeh M, Jabbari A, Moosavi-Movahedi AA. Copper nanoparticles-modified carbon paste transducer as a biosensor for determination of acetylcholine. Biosens Bioelectron 2009; 24(8):2328-2333.
[127]
Wang L, Chen X, Liu C, Yang W. Non-enzymatic acetylcholine electrochemical biosensor based on flower-like NiAl layered double hydroxides decorated with carbon dots. Sens Actuators B 2016; 233:199-205.
[128]
Shadlaghani A, Farzaneh M, Kinser D, Reid RC. Direct electrochemical detection of glutamate, acetylcholine, choline, and adenosine using non-enzymatic ectrodes. Sensors 2019; 19(3):447.
[129]
Tsetsenis T, Broussard JI, Dani JA. Dopaminergic regulation of hippocampal plasticity, learning, and memory. Front Behav Neurosci 2023; 16:1092420.
[130]
Wightman RM, Robinson DL. Transient changes in mesolimbic dopamine and their association with ‘reward’. J Neurochem 2002; 82(4):721-735.
[131]
Baik JH. Stress and the dopaminergic reward system. Exp Mol Med 2020; 52(12):1879-1890.
[132]
Inoue M, Takeuchi A, Manita S, Horigane S, Sakamoto M, Kawakami R, et al. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell 2019; 177(5):1346-1360.
[133]
Wang H, Jing M, Li Y. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr Opin Neurobiol 2018; 50:171-178.
[134]
Sjulson L, Cassataro D, DasGupta S, Miesenböck G. Cell-specific targeting of genetically encoded tools for neuroscience. Annu Rev Genet 2016; 50:571-594.
[135]
Zhao C, Chen S, Zhang L, Zhang D, Wu R, Hu Y, et al. Miniature three-photon microscopy maximized for scattered fluorescence collection. Nat Methods 2023; 20(4):617-622.
[136]
Klioutchnikov A, Wallace DJ, Sawinski J, Voit KM, Groemping Y, Kerr JND. A three-photon head-mounted microscope for imaging all layers of visual cortex in freely moving mice. Nat Methods 2023; 20(4):610-616.
[137]
Zhang J, Liu X, Xu W, Luo W, Li M, Chu F, et al. Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett 2018; 18(5):2903-2911.
[138]
Fekete Z, Zátonyi A, Kaszás A, Madarász M, Sl Aézia. Transparent neural interfaces: challenges and solutions of microengineered multimodal implants designed to measure intact neuronal populations using high-resolution electrophysiology and microscopy simultaneously. Microsyst Nanoeng 2023; 9(1):66.
[139]
Li HF, Zhou FY, Li L, Zheng YF. Design and development of novel MRI compatible zirconium—ruthenium alloys with ultralow magnetic susceptibility. Sci Rep 2016; 6(1):24414.
[140]
Nimbalkar S, Fuhrer E, Silva P, Nguyen T, Sereno M, Kassegne S, et al. Glassy carbon microelectrodes minimize induced voltages, mechanical vibrations, and artifacts in magnetic resonance imaging. Microsyst Nanoeng 2019; 5(1):61.
[141]
Tringides CM, Vachicouras N, de I Lázaro, Wang H, Trouillet A, Seo BR, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat Nanotechnol 2021; 16(9):1019-1029.
[142]
Jia Q, Duan Y, Liu Y, Liu J, Luo J, Song Y, et al. High-performance bidirectional microelectrode array for assessing sevoflurane anesthesia effects and in situ electrical stimulation in deep brain regions. ACS Sens 2024; 9(6):2877-2887.
[143]
Wang S, Li L, Zhang S, Jiang Q, Li P, Wang C, et al. Multifunctional ultraflexible neural probe for wireless optogenetics and electrophysiology. Giant 2024; 18:100272.
[144]
Shin H, Son Y, Chae U, Kim J, Choi N, Lee HJ, et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat Commun 2019; 10(1):3777.
[145]
Kim J, Gilbert E, Arndt K, Huang H, Oleniacz P, Jiang S, et al. Multifunctional tetrode-like drug delivery, optical stimulation, and electrophysiology (tetro-DOpE) probes. Biosens Bioelectron 2024; 265:116696.
[146]
Ko E, Vöröslakos M, Buzsáki G, Yoon E. Dual-color μ-LEDs integrated neural interface for multi-control optogenetic electrophysiology. 2024. bioRxiv: 2024.07.30.605927.
[147]
Fekete Z, Pálfi E, Márton G, Handbauer M, B Zérces, Ulbert I, et al. Combined in vivo recording of neural signals and iontophoretic injection of pathway tracers using a hollow silicon microelectrode. Sens Actuators B 2016; 236:815-824.
[148]
Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 2019; 15(3):148-160.
[149]
Butovas S, Schwarz C. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J Neurophysiol 2003; 90(5):3024-3039.
[150]
Hays MA, Kamali G, Koubeissi MZ, Sarma SV, Crone NE, Smith RJ, et al. Towards optimizing single pulse electrical stimulation: high current intensity, short pulse width stimulation most effectively elicits evoked potentials. Brain Stimul 2023; 16(3):772-782.
[151]
Seguin C, Jedynak M, David O, Mansour S, Sporns O, Zalesky A. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 2023; 111(9):1391-1401.
[152]
Topalovic U, Barclay S, Ling C, Alzuhair A, Yu W, Hokhikyan V, et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat Neurosci 2023; 26(3):517-527.
[153]
Liu Y, Xu S, Yang Y, Zhang K, He E, Liang W, et al. Nanomaterial-based microelectrode arrays for in vitro bidirectional brain–computer interfaces: a review. Microsyst Nanoeng 2023; 9(1):13.
[154]
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005; 8(9):1263-1268.
[155]
Kampasi K, English DF, Seymour J, Stark E, McKenzie S, Vöröslakos M, et al. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. Microsyst Nanoeng 2018; 4(1):10.
[156]
Kim K, Vöröslakos M, Seymour JP, Wise KD, Buzsáki G, Yoon E. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat Commun 2020; 11(1):2063.
[157]
Li L, Liu C, Su Y, Bai J, Wu J, Han Y, et al. Heterogeneous integration of microscale GaN light-emitting diodes and their electrical, optical, and thermal characteristics on flexible substrates. Adv Mater Technol 2018; 3(1):1700239.
[158]
Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015; 347(6218):159-163.
[159]
Sim JY, Haney MP, Park SI, McCall JG, Jeong JW. Microfluidic neural probes: in vivo tools for advancing neuroscience. Lab Chip 2017; 17(8):1406-1435.
[160]
Xie J, Song Y, Dai Y, Li Z, Gao F, Li X, et al. Nanoliposome-encapsulated caged-GABA for modulating neural electrophysiological activity with simultaneous detection by microelectrode arrays. Nano Res 2020; 13(6):1756-1763.
[161]
Dale J, Schmidt SL, Mitchell K, Turner DA, Grill WM. Evoked potentials generated by deep brain stimulation for parkinson’s disease. Brain Stimul 2022; 15(5):1040-1047.
[162]
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, et al. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ-Sci B 2024; 25:803-823.
[163]
Uehlin JP, Smith WA, Pamula VR, Pepin EP, Perlmutter S, Sathe V, et al. A single-chip bidirectional neural interface with high-voltage stimulation and adaptive artifact cancellation in standard CMOS. IEEE J Solid-State Circuits 2020; 55(7):1749-1761.
[164]
Islam MK, Rastegarnia A, Sanei S. Signal artifacts and techniques for artifacts and noise removal. M.A.R. Ahad, M.U. Ahmed (Eds.), Signal processing techniques for computational health informatics, Springer, Cham 2021; 23-79.
[165]
Metzger SL, Liu JR, Moses DA, Dougherty ME, Seaton MP, Littlejohn KT, et al. Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis. Nat Commun 2022; 13(1):6510.
[166]
Zhang S, Song Y, Wang M, Xiao G, Gao F, Li Z, et al. Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson’s disease using nano-based microelectrode arrays. Microsyst Nanoeng 2018; 4(1):17070.
[167]
Beauchamp MS, Oswalt D, Sun P, Foster BL, Magnotti JF, Niketeghad S, et al. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 2020; 181(4):774-783.
PDF(2677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/