器官保存——历史、发展与展望

刘欣萌, 舒志全, 张黎明, 李皓玥, 杨静, 张雷

工程(英文) ›› 2025, Vol. 44 ›› Issue (1) : 112-134.

PDF(5678 KB)
PDF(5678 KB)
工程(英文) ›› 2025, Vol. 44 ›› Issue (1) : 112-134. DOI: 10.1016/j.eng.2024.12.020
研究论文
Review

器官保存——历史、发展与展望

作者信息 +

Organ Preservation: History, Advancements, and Perspectives

Author information +
History +

Abstract

Recent advances in organ transplantation, regenerative medicine, and drug discovery have emphasized the critical importance of effective preservation techniques for organs. Despite these advances, current preservation techniques have significant limitations in maintaining the viability and functional efficacy of organs over the long term. As a result, there is a pressing need to develop reliable and efficient preservation strategies for organs. Currently, the clinical standard for organ preservation involves the use of static cold storage and organ machine perfusion, but these methods can only preserve organs for a couple of days or even a few hours. Notably, the development of cryobiology has yielded promising alternatives. In this review, we aim to provide a comprehensive overview of the progression of organ preservation methods, while emphasizing the limitations of traditional approaches. Moreover, we evaluate advanced preservation techniques for organs, including kidneys, livers, hearts, lungs, and intestines. Furthermore, we share a progress perspective on the future of organ preservation, with the ultimate goal of achieving viable long-term preservation to address the pressing issue of organ shortage.

Keywords

Organ preservation / Organ machine perfusion / Static cold storage / Vitrification / Preservation solution

引用本文

导出引用
刘欣萌, 舒志全, 张黎明. 器官保存——历史、发展与展望. Engineering. 2025, 44(1): 112-134 https://doi.org/10.1016/j.eng.2024.12.020

参考文献

[1]
Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, et al. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 2017; 35(6):530-542.
[2]
Karakoyun R, Romano A, Nordstrom J, Ericzon BG, Nowak G. Type of preservation solution, UW or HTK, has an impact on the incidence of biliary stricture following liver transplantation: a retrospective study. J Transplant 2019; 2019(1):8150736.
[3]
Agarwal A, Murdock P, Fridell JA. Comparison of histidine–tryptophan ketoglutarate solution and University of Wisconsin solution in prolonged cold preservation of kidney allografts. Transplantation 2006; 81(3):480-482.
[4]
de RJ Vries, Tessier SN, Banik PD, Nagpal S, Cronin SEJ, Ozer S, et al. Supercooling extends preservation time of human livers. Nat Biotechnol 2019; 37(10):1131-1136.
[5]
Fuller BJ, Lee CY. Hypothermic perfusion preservation: the future of organ preservation revisited?. Cryobiology 2007; 54(2):129-145.
[6]
Dou M, Lu C, Rao W. Bioinspired materials and technology for advanced cryopreservation. Trends Biotechnol 2022; 40(1):93-106.
[7]
Chen J, Liu X, Hu Y, Chen X, Tan S.Cryopreservation of tissues and organs: present, bottlenecks, and future. Front Vet Sci (2023), Article 101201794.
[8]
Liu Z, Zheng X, Wang J. Bioinspired ice-binding materials for tissue and organ cryopreservation. J Am Chem Soc 2022; 144(13):5685-5701.
[9]
Elliott GD, Wang S, Fuller BJ. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017; 76:74-91.
[10]
Zhan L, Rao JS, Sethia N, Slama MQ, Han Z, Tobolt D, et al. Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation. Nat Med 2022; 28(4):798-808.
[11]
Ibrahim SM, Kareem OH, Saffanah KM, Adamu AA, Khan MS, Rahman MBA, et al. Histological and mechanical evaluation of antifreeze peptide (Afp1m) cryopreserved skin grafts post transplantation in a rat model. Cryobiology 2018; 82:27-36.
[12]
Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q, Liu F, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med 2017; 9(379):eaah4586.
[13]
Ren S, Shu Z, Pan J, Wang Z, Ma R, Peng J, et al. Single-mode electromagnetic resonance rewarming for the cryopreservation of samples with large volumes: a numerical and experimental study. Biopreserv Biobank 2022; 20(4):317-322.
[14]
Dou M, Li Y, Sun Z, Li L, Rao W. L-Proline feeding for augmented freeze tolerance of Camponotus japonicus Mayr. Sci Bull 2019; 64(23):1795-1804.
[15]
Lewis A, Koukoura A, Tsianos GI, Gargavanis AA, Nielsen AA, Vassiliadis E. Organ donation in the US and Europe: the supply vs demand imbalance. Transplant Rev 2021; 35(2):100585.
[16]
World Health Organization. Seventy-fifth world health assembly [Internet]. Geneva: World Health Organization; 2022 May 27 [cited 2024 Sep 3]. Available from: https://www.who.int/about/governance/world-health-assembly/seventy-fifth-world-health-assembly.
[17]
Jones B. Keeping kidneys. Bull World Health Organ 2012; 90(10):718-719.
[18]
Massie AB, Werbel WA, Avery RK, Chiang TPY, Snyder JJ, Segev DL. Quantifying excess deaths among solid organ transplant recipients in the COVID-19 era. Am J Transplant 2022; 22(8):2077-2082.
[19]
Miller JM, Ahn YS, Hart A, Lindblad K, Jett C, Fox C, et al. OPTN/SRTR 2021 annual data report: COVID-19. Am J Transplant 2023; 23(2):S475-S522.
[20]
Aubert O, Yoo D, Zielinski D, Cozzi E, Cardillo M, Durr M, et al. COVID-19 pandemic and worldwide organ transplantation: a population-based study. Lancet Public Health 2021; 6(10):e709-e719.
[21]
Cholankeril G, Podboy A, Alshuwaykh OS, Kim D, Kanwal F, Esquivel CO, et al. Early impact of COVID-19 on solid organ transplantation in the united states. Transplantation 2020; 104(11):2221-2224.
[22]
Israni AK, Zaun D, Gauntt K, Schaffhausen C, McKinney W, Snyder JJ. OPTN/SRTR 2020 annual data report: DOD. Am J Transplant 2022; 22(Suppl 2):519-552.
[23]
Li X, Burlak C. Xenotransplantation literature update, March/April 2020. Xenotransplantation 2020; 27(3):e12607.
[24]
Lentine KL, Smith JM, Hart A, Miller J, Skeans MA, Larkin L, et al. OPTN/SRTR 2020 annual data report: kidney. Am J Transplan 2022; 22(Suppl 2):21-136.
[25]
Colvin M, Smith JM, Ahn Y, Skeans MA, Messick E, Bradbrook K, et al. OPTN/SRTR 2020 annual data report: heart. Am J Transplant 2022; 22(Suppl 2):350-437.
[26]
Kwong AJ, Ebel NH, Kim WR, Lake JR, Smith JM, Schladt DP, et al. OPTN/SRTR 2020 annual data report: liver. Am J Transplant 2022; 22(Suppl 2):204-309.
[27]
Tchouta LN, Alghanem F, Rojas-Pena A, Bartlett RH. Prolonged (≥24 hours) normothermic (≥32 °C) ex vivo organ perfusion: lessons from the literature. Transplantation 2021; 105(5):986-998.
[28]
Silva AM, Ferreira MA Júnior, Cardoso AIQ, Ivo ML, Almeida JPF, Melo RDS. Costs related to obtaining organs for transplantation: a systematic review. Transplant Rev 2022; 36(4):100724.
[29]
Kaths JM, Echeverri J, Chun YM, Cen JY, Goldaracena N, Linares I, et al. Continuous normothermic ex vivo kidney perfusion improves graft function in donation after circulatory death pig kidney transplantation. Transplantation 2017; 101(4):754-763.
[30]
Kaths JM, Echeverri J, Goldaracena N, Louis KS, Chun YM, Linares I, et al. Eight-hour continuous normothermic ex vivo kidney perfusion is a safe preservation technique for kidney transplantation: a new opportunity for the storage, assessment, and repair of kidney grafts. Transplantation 2016; 100(9):1862-1870.
[31]
Wilks BT, Toner M, Tessier SN. Organ repair and regeneration: preserving organs in the regenerative medicine era. Am J Transplant 2022; 22(5):1487-1488.
[32]
Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949; 164(4172):666.
[33]
Lovelock JE, Bishop MW. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 1959; 183(4672):1394-1395.
[34]
Kang MH, You SY, Hong K, Kim JH. DMSO impairs the transcriptional program for maternal-to-embryonic transition by altering histone acetylation. Biomaterials 2020; 230:119604.
[35]
Collins GM, Bravo-Shugarman M, Terasaki PI. Kidney preservation for transportation. Initial perfusion and 30 hours’ ice storage. Lancet 1969; 294(7632):1219-1222.
[36]
Dreikorn K, Horsch R, Röhl L. 48- to 96-hour preservation of canine kidneys by initial perfusion and hypothermic storage using the Euro-Collins solution. Eur Urol 1980; 6(4):221-224.
[37]
Wahlberg JA, Southard JH, Belzer FO. Development of a cold storage solution for pancreas preservation. Cryobiology 1986; 23(6):477-482.
[38]
Panisello-Roselló A, Verde E, Amine M Zaouali, Flores M, Alva N, Lopez A, et al. The relevance of the UPS in fatty liver graft preservation: a new approach for IGL-1 and HTK solutions. Int J Mol Sci 2017; 18(11):2287.
[39]
Saemann L, Korkmaz-Icöz S, Hoorn F, Veres G, Kraft P, Georgevici AI, et al. Reconditioning of circulatory death hearts by ex-vivo machine perfusion with a novel HTK-N preservation solution. J Heart Lung Transplant 2021; 40(10):1135-1144.
[40]
Menasche P, Termignon JL, Pradier F, Grousset C, Mouas C, Alberici G, et al. Experimental evaluation of Celsior, a new heart preservation solution. Eur J Cardiothorac Surg 1994; 8(4):207-213.
[41]
Keeler R, Swinney J, Taylor RMR, Uldall PR. The problem of renal preservation. Br J Urol 1966; 38(6):653-656.
[42]
Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother 2011; 38(2):125-142.
[43]
Ross H, Marshall VC, Escott ML. 72-hr canine kidney preservation without continuous perfusion. Transplantation 1976; 21(6):498-501.
[44]
O JM’Callaghan, Knight SR, Morgan RD, Morris PJ. Preservation solutions for static cold storage of kidney allografts: a systematic review and meta-analysis. Am J Transplant 2012; 12(4):896-906.
[45]
Jamieson RW, Friend PJ. Organ reperfusion and preservation. Front Biosci 2008; 13:221-235.
[46]
Belzer FO. Clinical organ preservation with UW solution. Transplantation 1989; 47(6):1097-1098.
[47]
Belzer FO, D AM’Alessandro, Hoffmann RM, Knechtle SJ, Reed A, Pirsch JD, et al. The use of UW solution in clinical transplantation a 4-year experience. Ann Surg 1992; 215(6):579-585.
[48]
Que W, Hu X, Fujino M, Terayama H, Sakabe K, Fukunishi N, et al. Prolonged cold ischemia time in mouse heart transplantation using supercooling preservation. Transplantation 2020; 104(9):1879-1889.
[49]
Bretschneider HJ. Myocardial protection. Thorac Cardiovasc Surg 1980; 28(5):295-302.
[50]
Gebhard MM, Bretschneider HJ, Gersing E, Preusse CJ, Schnabel PA, Ulbricht LJ. Calcium-free cardioplegia—pro. Eur Heart J 1983; 4(Suppl H):151-160.
[51]
Saitoh Y, Hashimoto M, Ku K, Kin S, Nosaka S, Masumura S, et al. Heart preservation in HTK solution: role of coronary vasculature in recovery of cardiac function. Ann Thorac Surg 2000; 69(1):107-112.
[52]
Mangus RS, Kubal CA, Ekser B, Mihaylov P, Lutz A, Fridell JA.Deceased donor organ flush with equivalent volumes of HTK and UW at a single US organ procurement organization. Transplantation, 104 (Suppl 3) (2020), p. S259.
[53]
Mohr A, Brockmann JG, Becker F. HTK-N: modified histidine–tryptophan–ketoglutarate solution—a promising new tool in solid organ preservation. Int J Mol Sci 2020; 21(18):6468.
[54]
Kahn J, Schemmer P. Comprehensive review on Custodiol-N (HTK-N) and its molecular side of action for organ preservation. Curr Pharm Biotechnol 2018; 18(15):1237-1248.
[55]
Szabó G, Brlecic P, Loganathan S, Wagner F, Rastan A, Doenst T, et al. Custodiol-N versus Custodiol: a prospective randomized double-blind multicentre phase III trial in patients undergoing elective coronary bypass surgery. Eur J Cardio-Thoracic 2022; 62(5):ezac287.
[56]
Adam R, Delvart V, Karam V, Ducerf C, Navarro F, Letoublon C, et al. Compared efficacy of preservation solutions in liver transplantation: a long-term graft outcome study from the European liver transplant registry. Am J Transplant 2015; 15(2):395-406.
[57]
Codas R, Petruzzo P, Morelon E, Lefran Nçois, Danjou F, Berthillot C, et al. IGL-1 solution in kidney transplantation: first multi-center study. Clin Transplant 2009; 23(3):337-342.
[58]
Habran M, De J Beule, Jochmans II. GL-1 preservation solution in kidney and pancreas transplantation: a systematic review. PLoS One 2020; 15(4):e0231019.
[59]
Hauet T, Goujon JM, Baumert H, Petit I, Carretier M, Eugene M, et al. Polyethylene glycol reduces the inflammatory injury due to cold ischemia/reperfusion in autotransplanted pig kidneys. Kidney Int 2002; 62(2):654-667.
[60]
Faure JP, Hauet T, Han Z, Goujon JM, Petit I, Mauco G, et al. Polyethylene glycol reduces early and long-term cold ischemia-reperfusion and renal medulla injury. J Pharmacol Exp Ther 2002; 302(3):861-870.
[61]
Hauet T, Baumert H, Faure JP, Bardou A, Beguinot S, Gibelin H, et al. Beneficial effects of low-potassium and polyethylene glycol solution on renal lipid peroxidation during 48-hour cold storage and normothermic reperfusion. Transplant Proc 1998; 30(6):2798-2799.
[62]
Eugene M, Hauet T, Mothes D, Goujon JM, Le L Moyec, Carretier M, et al. Beneficial effects of a low-potassium+ and polyethylene glycol solution on renal function and structure during 48-hour cold storage preservation. Transplant Proc 1997; 29(5):2360-2362.
[63]
Janssen H, Janbetaen PHE, Broelsch CE. Celsior solution compared with University of Wisconsin solution (UW) and histidine–tryptophan–ketoglutarate solution (HTK) in the protection of human hepatocytes against ischemia-reperfusion injury. Transpl Int 2003; 16(7):515-522.
[64]
Garcia-Gil FA, Gonzalvo E, Garcia-Garcia JJ, Albendea CD, Guemes A, Tome-Zelaya E, et al. Lipid peroxidation in ischemia-reperfusion oxidative injury of the graft preserved in Celsior and University of Wisconsin solutions on a pig pancreas transplantation model. Transplant Proc 2006; 38(8):2595-2599.
[65]
Faenza A, Catena F, Nardo B, Montalti R, Capocasale E, Busi N, et al. Kidney preservation with University of Wisconsin and Celsior solution: a prospective multicenter randomized study. Transplantation 2001; 72(7):1274-1277.
[66]
Tatum R, O TJ’Malley, Bodzin AS, Tchantchaleishvili V. Machine perfusion of donor organs for transplantation. Artif Organs 2021; 45(7):682-695.
[67]
Hochachka PW. Defense strategies against hypoxia and hypothermia. Science 1986; 231(4735):234-241.
[68]
Kristián T, Siesjö BK. Calcium in ischemic cell death. Stroke 1998; 29(3):705-718.
[69]
Knijff LWD, van C Kooten, Ploeg RJ.The effect of hypothermic machine perfusion to ameliorate ischemia-reperfusion injury in donor organs. Front Immunol (2022), Article 13848352.
[70]
Ceresa CDL, Nasralla D, Pollok JM, Friend PJ. Machine perfusion of the liver: applications in transplantation and beyond. Nat Rev Gastroenterol Hepatol 2022; 19(3):199-209.
[71]
Karangwa S, Panayotova G, Dutkowski P, Porte RJ, Guarrera JV, Schlegel A. Hypothermic machine perfusion in liver transplantation. Int J Surg 2020; 82:44-51.
[72]
Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CDL, et al. A randomized trial of normothermic preservation in liver transplantation. Nature 2018; 557(7703):50-56.
[73]
Jahania MS, Sanchez JA, Narayan P, Lasley RD, Mentzer RM Jr. Heart preservation for transplantation: principles and strategies. Ann Thorac Surg 1999; 68(5):1983-1987.
[74]
Nebrig M, Neuhaus P, Pascher A. Advances in the management of the explanted donor liver. Nat Rev Gastroenterol Hepatol 2014; 11(8):489-496.
[75]
Legeai C, Durand L, Savoye E, Macher MA, Bastien O. Effect of preservation solutions for static cold storage on kidney transplantation outcomes: a national registry study. Am J Transplant 2020; 20(12):3426-3442.
[76]
Jing L, Yao L, Zhao M, Peng LP, Liu M. Organ preservation: from the past to the future. Acta Pharmacol Sin 2018; 39(5):845-857.
[77]
Akutsu N, Maruyama M, Otsuki K, Saigo K, Aoyama H, Kenmochi T. Effectivity of hypothermic machine perfusion preservation for non-heart-beating donor kidney transplantation in Japan. Transplantation 2018; 102:S790.
[78]
Pizanis N, Petrov A, Heckmann J, Wiswedel I, Wohlschlager J, de H Groot, et al. A new preservation solution for lung transplantation: evaluation in a porcine transplantation model. J Heart Lung Transplant 2012; 31(3):310-317.
[79]
Zhu C, Su Y, Juriasingani S, Zheng H, Veramkovich V, Jiang J, et al. Supplementing preservation solution with mitochondria-targeted H2S donor AP39 protects cardiac grafts from prolonged cold ischemia-reperfusion injury in heart transplantation. Am J Transplant 2019; 19(11):3139-3148.
[80]
Guenthart BA, Alassar A, Koyano T, La S Francesca, Chan JL, Krishnan A, et al.Longest storage period with static hypothermic preservation in cardiac transplantation: initial experience in the west coast. J Heart Lung Transplant, 40 (4 Suppl) (2021), p. S471.
[81]
Gallois ML, Nancrede NC, Nancrede JG.Experiments on the principle of life, and particularly on the principle of the motions of the heart, and on the seat of this principle. Legare Street Press, Hungerford (2023).
[82]
Bernard C. Claude Bernard and the internal environment: a memorial symposium. Robin ED, editor. New York City: Marcel Dekker; 1979.
[83]
Bernard C. Leçons sur les propriétés des tissus vivants. Paris: Germer Baillière; 1866. French.
[84]
Marchioro TL, Huntley RT, Waddell WR, Starzl TE. Extracorporeal perfusion for obtaining postmortem homografts. Surgery 1963; 54:900-911.
[85]
St SD Peter, Imber CJ, Friend PJ. Liver and kidney preservation by perfusion. Lancet 2002; 359(9306):604-613.
[86]
Belzer FO, Ashby BS, Gulyassy PF, Powell M. Successful seventeen-hour preservation and transplantation of human-cadaver kidney. N Engl J Med 1968; 278(11):608-610.
[87]
Humphries AL Jr, Russell R, Stoddard LD, Moretz WH. Successful five-day kidney preservation. Perfusion with hypothermic, diluted plasma. Invest Urol 1968; 5(6):609-618.
[88]
Belzer FO, Ashby BS, Dunphy JE. 24-hour and 72-hour preservation of canine kidneys. Lancet 1967; 290(7515):536-539.
[89]
Levy MN. Oxygen consumption and blood flow in the hypothermic, perfused kidney. Am J Physiol 1959; 197(5):1111-1114.
[90]
Brat A, de KM Vries, van EWE Heurn, Huurman VAL, de W Jongh, Leuvenink HGD, et al. Hypothermic machine perfusion as a national standard preservation method for deceased donor kidneys. Transplantation 2022; 106(5):1043-1050.
[91]
Mergental H, Laing RW, Kirkham AJ, Perera M, Boteon YL, Attard J, et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat Commun 2020; 11:2939.
[92]
Ramírez-Del A Val, Guarrera J, Porte RJ, Selzner M, Spiro M, Raptis DA, et al. Does machine perfusion improve immediate and short-term outcomes by enhancing graft function and recipient recovery after liver transplantation? A systematic review of the literature, meta-analysis and expert panel recommendations. Clin Transplant 2022; 36(10):e14638.
[93]
Moreno J Garijo, Roscoe A. Ex-vivo lung perfusion. Curr Opin Anaesthesiol 2020; 33(1):50-54.
[94]
Ardehali A, Esmailian F, Deng M, Soltesz E, Hsich E, Naka Y, et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 2015; 385(9987):2577-2584.
[95]
Van D Raemdonck, Neyrinck A, Rega F, Devos T, Pirenne J. Machine perfusion in organ transplantation: a tool for ex-vivo graft conditioning with mesenchymal stem cells?. Curr Opin Organ Transplant 2013; 18(1):24-33.
[96]
op S den Dries, Karimian N, Sutton ME, Westerkamp AC, Nijsten MWN, Gouw ASH, et al. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am J Transplant 2013; 13(5):1327-1335.
[97]
Kang T, You Y, Jun S. Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications. Food Sci Biotechnol 2020; 29(3):303-321.
[98]
Zachariassen KE, Kristiansen E. Ice nucleation and antinucleation in nature. Cryobiology 2000; 41(4):257-279.
[99]
Costanzo JP, do MC Amaral, Rosendale AJ, Lee RE Jr. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol 2013; 216(18):3461-3473.
[100]
Layne JR, Costanzo JP, Lee RE. Freeze duration influences postfreeze survival in the frog Rana sylvatica. J Exp Zool 1998; 280(2):197-201.
[101]
Scotte M, Eschwege P, Cherruau C, Fontaliran F, Moreau F, Houssin D. Liver preservation below 0 °C with UW solution and 2,3-butanediol. Cryobiology 1996; 33(1):54-61.
[102]
Okamoto T, Nakamura T, Zhang J, Aoyama A, Chen F, Fujinaga T, et al. Successful sub-zero non-freezing preservation of rat lungs at −2 °C utilizing a new supercooling technology. J Heart Lung Transplant 2008; 27(10):1150-1157.
[103]
Bruinsma BG, Berendsen TA, Izamis ML, Yeh H, Yarmush ML, Uygun K. Supercooling preservation and transplantation of the rat liver. Nat Protoc 2015; 10(3):484-494.
[104]
Rubinsky B, Perez PA, Carlson ME. The thermodynamic principles of isochoric cryopreservation. Cryobiology 2005; 50(2):121-138.
[105]
Powell-Palm MJ, Rubinsky B, Sun W. Freezing water at constant volume and under confinement. Commun Phys 2020; 3(1):39.
[106]
Powell-Palm MJ, Koh-Bell A, Rubinsky B. Isochoric conditions enhance stability of metastable supercooled water. Appl Phys Lett 2020; 116(12):123702.
[107]
Consiglio AN, Lilley D, Prasher R, Rubinsky B, Powell-Palm MJ. Methods to stabilize aqueous supercooling identified by use of an isochoric nucleation detection (INDe) device. Cryobiology 2022; 106:91-101.
[108]
Consiglio A, Ukpai G, Rubinsky B, Powell-Palm MJ. Suppression of cavitation-induced nucleation in systems under isochoric confinement. Phys Rev Res 2020; 2(2):023350.
[109]
Powell-Palm MJ, Charwat V, Charrez B, Siemons B, Healy KE, Rubinsky B. Isochoric supercooled preservation and revival of human cardiac microtissues. Commun Phys 2021; 4(1):1118.
[110]
stase G, Botea F, Beșchea GA, Barcu A, Popescu I, et al. A two-compartment system for subfreezing temperatures preservation of large volumes of organic matter in an isochoric system. 2022. Bio Rxiv: 2022.08.31.506083.
[111]
N Găstase, Botea F, Be GAșchea, ȘC Iâmpean, Barcu A, Neac Ișu, et al. Isochoric supercooling organ preservation system. Bioengineering 2023; 10(8):934.
[112]
Cronin SEJ, Pendexter CA, de RJ Vries, Özer S, Banik PD, Nagpal S, et al. Leveraging machine perfusion for whole organ preservation using partial freezing. Cryobiology 2018; 81:233.
[113]
Da L Silveira Cavalcante, Pendexter CA, Cronin SEJ, de RJ Vries, Ellett F, Marques B, et al. Extending preservation duration of hearts and livers with partial freezing. Cryobiology 2020; 97:268.
[114]
Tessier SN, de RJ Vries, Pendexter CA, Cronin SEJ, Ozer S, Hafiz EOA, et al. Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun 2022; 13:4008.
[115]
Hosenpud JD, Edwards EB, Lin HM, Daily OP. Influence of HLA matching on thoracic transplant outcomes. An analysis from the UNOS/ISHLT thoracic registry. Circulation 1996; 94(2):170-174.
[116]
Scandling JD, Busque S, Shizuru JA, Engleman EG, Strober S. Induced immune tolerance for kidney transplantation. N Engl J Med 2011; 365(14):1359-1360.
[117]
Pegg DE. Principles of cryopreservation. Methods Mol Biol 2007; 368:39-57.
[118]
de RJ Vries, Yarmush M, Uygun K. Systems engineering the organ preservation process for transplantation. Curr Opin Biotechnol 2019; 58:192-201.
[119]
Sharma A, Rao JS, Han Z, Gangwar L, Namsrai B, Gao Z, et al. Vitrification and nanowarming of kidneys. Adv Sci 2021; 8(19):2101691.
[120]
Kapoore RV, Huete-Ortega M, Day JG, Okurowska K, Slocombe SP, Stanley MS, et al. Effects of cryopreservation on viability and functional stability of an industrially relevant alga. Sci Rep 2019; 9(1):2093.
[121]
Gonzales F, Luyet B. Resumption of heart-beat in chick embryo frozen in liquid nitrogen. Biodynamica 1950; 7(126–128):1-5.
[122]
Luyet BJ, Hodapp EL. Revival of frog’s spermatozoa vitrified in liquid air. Exp Biol Med 1938; 39(3):433-434.
[123]
Zhan L, Li M, Hays T, Bischof J. Cryopreservation method for drosophila melanogaster embryos. Nat Commun 2021; 12:2412.
[124]
Anderson RH. The developing heart in chick embryos. Circulation 1990; 82(4):1542-1543.
[125]
Engelmann F. Cryopreservation of embryos: an overview. Methods Mol Biol 2011; 710:155-184.
[126]
Fahy GM, Wowk B, Pagotan R, Chang A, Phan J, Thomson B, et al. Physical and biological aspects of renal vitrification. Organogenesis 2009; 5(3):167-175.
[127]
Alba-Simionesco C, Judeinstein P, Longeville S, Osta O, Porcher F, Caupin F, et al. Interplay of vitrification and ice formation in a cryoprotectant aqueous solution at low temperature. Proc Natl Acad Sci USA 2022; 119(12):e2112248119.
[128]
Kaiser J. New prospects for putting organs on ice. Science 2002; 295(5557):1015.
[129]
Song YC, Khirabadi BS, Lightfoot F, Brockbank KG, Taylor MJ. Vitreous cryopreservation maintains the function of vascular grafts. Nat Biotechnol 2000; 18(3):296-299.
[130]
Taylor MJ, Weegman BP, Baicu SC, Giwa SE. New approaches to cryopreservation of cells, tissues, and organs. Transfus Med Hemother 2019; 46(3):197-215.
[131]
Smith GD, Serafini PC, Fioravanti J, Yadid I, Coslovsky M, Hassun P, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril 2010; 94(6):2088-2095.
[132]
Gao Z, Namsrai B, Han Z, Joshi P, Rao JS, Ravikumar V, et al. Vitrification and rewarming of magnetic nanoparticle-loaded rat hearts. Adv Mater Technol 2022; 7(3):2100873.
[133]
Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology 1984; 21(4):407-426.
[134]
Faltus M, Bilavcik A, Zamecnik J. Vitrification ability of combined and single cryoprotective agents. Plants 2021; 10(11):2392.
[135]
Lin M, Cao H, Li J. Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater 2023; 155:35-56.
[136]
Jia G, Chen Y, Sun A, Orlien V. Control of ice crystal nucleation and growth during the food freezing process. Compr Rev Food Sci Food Saf 2022; 21(3):2433-2454.
[137]
Karlsson JO. Cryopreservation: freezing and vitrification. Science 2002; 296(5568):655-656.
[138]
Powell-Palm MJ, Henley EM, Consiglio AN, Lager C, Chang B, Perry R, et al. Cryopreservation and revival of Hawaiian stony corals using isochoric vitrification. Nat Commun 2023; 14:4859.
[139]
Zhang Y, Ukpai G, Grigoropoulos A, Powell-Palm MJ, Weegman BP, Taylor MJ, et al. Isochoric vitrification: an experimental study to establish proof of concept. Cryobiology 2018; 83:48-55.
[140]
Puschmann E, Selden C, Butler S, Fuller BJ. Liquidus tracking: controlled rate vitrification for the cryopreservation of larger volumes and tissues. Cryo Lett 2014; 35:4345-4355.
[141]
Chiu-Lam A, Staples E, Pepine CJ, Rinaldi C. Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Sci Adv 2021; 7(2):eabe3005.
[142]
Southard JH, Belzer FO. Organ preservation. Annu Rev Med 1995; 46:235-247.
[143]
Karow AM Jr, Wiggins S, Carrier GO, Brown R, Matheny JL. Functional preservation of the mammalian kidney. V. Pharmacokinetics of dimethyl sulfoxide (1.4 M) in kidneys (rabbit and dog) perfused at 37, 25, or 10 °C followed by transplantation (dog). J Surg Res 1979; 27(2):93-99.
[144]
Rahman SS, Kadakia S, Balsam L, Rubinstein S. Autonomic dysfunction as a delayed sequelae of acute ethylene glycol ingestion: a case report and review of the literature. J Med Toxicol 2012; 8(2):124-129.
[145]
Porter WH. Ethylene glycol poisoning: quintessential clinical toxicology; analytical conundrum. Clin Chim Acta 2012; 413(3–4):365-377.
[146]
Hess R, Bartels MJ, Pottenger LH. Ethylene glycol: an estimate of tolerable levels of exposure based on a review of animal and human data. Arch Toxicol 2004; 78(12):671-680.
[147]
Brent J. Current management of ethylene glycol poisoning. Drugs 2001; 61(7):979-988.
[148]
Gardner TB, Manning HL, Beelen AP, Cimis RJ, Cates JMM, Lewis LD. Ethylene glycol toxicity associated with ischemia, perforation, and colonic oxalate crystal deposition. J Clin Gastroenterol 2004; 38(5):435-439.
[149]
Catchings TT, Beamer WC, Lundy L, Prough DS. Adult respiratory distress syndrome secondary to ethylene glycol ingestion. Ann Emerg Med 1985; 14(6):594-596.
[150]
O M’Connell, McClure N, Lewis SEM. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod 2002; 17(3):704-709.
[151]
Kim JH, Lee SS, Jung MH, Yeo HD, Kim HJ, Yang JI, et al. N-Acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrol Dial Transplant 2010; 25(5):1435-1443.
[152]
Homsi E, Janino P, de JB Faria. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int 2006; 69(8):1385-1392.
[153]
Korrapati MC, Shaner BE, Schnellmann RG. Recovery from glycerol-induced acute kidney injury is accelerated by suramin. J Pharmacol Exp Ther 2012; 341(1):126-136.
[154]
Shlafer M, Karow AM Jr. Pharmacological effects of dimethyl sulfoxide on the mammalian myocardium. Ann N Y Acad Sci 1975; 243(1):110-121.
[155]
Ogura T, Shuba LM, McDonald TF. Action potentials, ionic currents and cell water in guinea pig ventricular preparations exposed to dimethyl sulfoxide. J Pharmacol Exp Ther 1995; 273(3):1273-1286.
[156]
Clark P, Fahy GM, Karow AM Jr. Factors influencing renal cryopreservation. II. Toxic effects of three cryoprotectants in combination with three vehicle solutions in nonfrozen rabbit cortical slices. Cryobiology 1984; 21(3):274-284.
[157]
Rariy RV, Klibanov AM. Correct protein folding in glycerol. Proc Natl Acad Sci USA 1997; 94(25):13520-13523.
[158]
Arakawa T, Kita Y, Timasheff SN. Protein precipitation and denaturation by dimethyl sulfoxide. Biophys Chem 2007; 131(1–3):62-70.
[159]
Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 2007; 111(35):10453-10460.
[160]
Wang X, Hua TC, Sun DW, Liu B, Yang G, Cao Y. Cryopreservation of tissue-engineered dermal replacement in Me2SO: toxicity study and effects of concentration and cooling rates on cell viability. Cryobiology 2007; 55(1):60-65.
[161]
It I. Rapid method for comparing the cytotoxicity of organic solvents and their ability to destabilize proteins of the erythrocyte membrane. Pharmazie 2001; 568:8-9.
[162]
Morley P, Whitfield JF. The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types. J Cell Physiol 1993; 156(2):219-225.
[163]
Mattson MP, Chan SL. Calcium orchestrates apoptosis. Nat Cell Biol 2003; 5(12):1041-1043.
[164]
Sui X, Wen C, Yang J, Guo H, Zhao W, Li Q, et al. Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater Sci Eng 2019; 5(2):1083-1091.
[165]
Liu M, Zhang X, Guo H, Zhu Y, Wen C, Sui X, et al. Dimethyl sulfoxide-free cryopreservation of chondrocytes based on zwitterionic molecule and polymers. Biomacromolecules 2019; 20(10):3980-3988.
[166]
Yang J, Liu M, Zhang T, Ma J, Ma Y, Tian S, et al. Cell-friendly regulation of ice crystals by antifreeze organism-inspired materials. AIChE J 2022; 68(10):e17822.
[167]
Zhu W, Guo J, Agola JO, Croissant JG, Wang Z, Shang J, et al. Metal–organic framework nanoparticle-assisted cryopreservation of red blood cells. J Am Chem Soc 2019; 141(19):7789-7796.
[168]
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5(8):793-804.
[169]
Heo YS, Lee HJ, Hassell BA, Irimia D, Toth TL, Elmoazzen H, et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip 2011; 11(20):3530.
[170]
Meng L, Huezo X, Stone BA, Baek K, Ringler G, Marrs RP.Development of a microfluidic device for automated vitrification human embryo. Fertil Steril, 96 (3 Suppl) (2011), p. S207.
[171]
J Bérôme, Commandeur J. Dynamics of glasses below the glass transition. Nature 1997; 386(6625):589-592.
[172]
Yannas I. Vitrification temperature of water. Science 1968; 160(3825):298-299.
[173]
Eisenberg DP, Rabin Y. Stress–strain measurements in vitrified arteries permeated with synthetic ice modulators. J Biomech Eng 2015; 137(8):081007.
[174]
Mehl PM. Nucleation and crystal growth in a vitrification solution tested for organ cryopreservation by vitrification. Cryobiology 1993; 30(5):509-518.
[175]
Fahy GM, Wowk B, Wu J, Phan J, Rasch C, Chang A, et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology 2004; 48(2):157-178.
[176]
Han Z, Gangwar L, Magnuson E, Etheridge ML, Pringle CO, Bischof JC, et al. Supplemented phase diagrams for vitrification CPA cocktails: DP6, VS55 and M22. Cryobiology 2022; 106:113-121.
[177]
Johnson WA, Mehl RF. Reaction kinetics in process of nucleation and growth. Trans AIME 1939; 135:416-442.
[178]
Avrami M. Kinetics of phase change. I. General theory. J Chem Phys 1939; 7(12):1103-1112.
[179]
Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 1940; 8(2):212-224.
[180]
Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 1941; 9(2):177-184.
[181]
Uhlmann DR. A kinetic treatment of glass formation. J Non-Cryst Solids 1972; 7(4):337-348.
[182]
Onorato PIK, Uhlmann DR. Nucleating heterogeneities and glass formation. J Non-Cryst Solids 1976; 22(2):367-378.
[183]
MacFarlane DR. Continuous cooling (CT) diagrams and critical cooling rates: a direct method of calculation using the concept of additivity. J Non-Cryst Solids 1982; 53(1–2):61-72.
[184]
Benson JD, Kearsley AJ, Higgins AZ. Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology 2012; 64(3):144-151.
[185]
Boutron P. Comparison with the theory of the kinetics and extent of ice crystallization and of the glass-forming tendency in aqueous cryoprotective solutions. Cryobiology 1986; 23(1):88-102.
[186]
Han Z, Rao JS, Ramesh S, Hergesell J, Namsrai BE, Etheridge ML, et al. Model-guided design and optimization of CPA perfusion protocols for whole organ cryopreservation. Ann Biomed Eng 2023; 51(10):2216-2228.
[187]
Wowk B, Fahy GM, Ahmedyar S, Taylor MJ, Rabin Y. Vitrification tendency and stability of DP6-based vitrification solutions for complex tissue cryopreservation. Cryobiology 2018; 82:70-77.
[188]
Boutron P. Glass-forming tendency and stability of the amorphous state in solutions of a 2,3-butanediol containing mainly the levo and dextro isomers in water, buffer, and Euro-Collins. Cryobiology 1993; 30(1):86-97.
[189]
Peyridieu JF, Baudot A, Boutron P, Mazuer J, Odin J, Ray A, et al. Critical cooling and warming rates to avoid ice crystallization in small pieces of mammalian organs permeated with cryoprotective agents. Cryobiology 1996; 33(4):436-446.
[190]
Boutron P, Mehl P. Theoretical prediction of devitrification tendency: determination of critical warming rates without using finite expansions. Cryobiology 1990; 27(4):359-377.
[191]
MacFarlane DR, Forsyth M. Devitrification and recrystallization of glass forming aqueous solutions. D.E. Pegg, A.M. Karow (Eds.), The Biophysics of organ cryopreservation, Springer, Berlin 1987; 237-263.
[192]
Han Z, Rao JS, Gangwar L, Namsrai BE, Pasek-Allen JL, Etheridge ML, et al. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat Commun 2023; 14:3407.
[193]
Pan J, Zeng Q, Peng K, Zhou Y, Shu Z. Review of rewarming methods for cryopreservation. Biopreserv Biobank 2024; 22(4):304-311.
[194]
Czajka C. Nanowarming improves cryopreservation. Science 2017; 355(6328):921.
[195]
Jin B, Kleinhans FW, Mazur P. Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology 2014; 68(3):419-430.
[196]
Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano 2017; 11(8):7869-7878.
[197]
Hou Y, Lu C, Dou M, Zhang C, Chang H, Liu J, et al. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomater 2020; 102:403-415.
[198]
Khosla K, Zhan L, Bhati A, Carley-Clopton A, Hagedorn M, Bischof J. Characterization of laser gold nanowarming: a platform for millimeter-scale cryopreservation. Langmuir 2019; 35(23):7364-7375.
[199]
Gao Z, Ring HL, Sharma A, Namsrai B, Tran N, Finger EB, et al. Preparation of scalable silica-coated iron oxide nanoparticles for nanowarming. Adv Sci 2020; 7(4):1901624.
[200]
Zhan T, Liu K, Yang J, Dang H, Chen L, Xu Y. Fe3O4 nanoparticles with carboxylic acid functionality for improving the structural integrity of whole vitrified rat kidneys. ACS Appl Nano Mater 2021; 4(12):13552-13561.
[201]
Pan J, Ren S, Sekar PK, Peng J, Shu Z, Zhao G, et al. Investigation of electromagnetic resonance rewarming enhanced by magnetic nanoparticles for cryopreservation. Langmuir 2019; 35(23):7560-7570.
[202]
Luo D, Yu C, He L, Lu C, Gao D. Development of a single mode electromagnetic resonant cavity for rewarming of cryopreserved biomaterials. Cryobiology 2006; 53(2):288-293.
[203]
Wang T, Zhao G, Deng Z, Gao C, Cao Y, Gao D. Theoretical investigation of a novel microwave antenna aided cryovial for rapid and uniform rewarming of frozen cryoprotective agent solutions. Appl Therm Eng 2015; 89:968-977.
[204]
Cui X, Labarrere C, He L, Cheng S, Siderys H, Kovacs R, et al. Cryopreservation and microsurgical implantation of rabbit carotid arteries. Cell Preserv Technol 2002; 1(2):121-128.
[205]
Pan J, Shu Z, Ren S, Chen M, Gao D. Development of an electromagnetic resonance system for rapid and uniform rewarming of cryopreserved biomaterials. Cryobiology 2016; 73(3):411-412.
[206]
Xu R, Treeby BE, Martin E. Experiments and simulations demonstrating the rapid ultrasonic rewarming of frozen tissue cryovials. J Acoust Soc Am 2023; 153(1):517-528.
[207]
Olmo A, Barroso P, Barroso F, Risco R. The use of high-intensity focused ultrasound for the rewarming of cryopreserved biological material. IEEE Trans Ultrason Ferroelectr Freq Control 2021; 68(3):599-607.
[208]
Kennedy JE, Ter GR Haar, Cranston D. High intensity focused ultrasound: surgery of the future?. Br J Radiol 2003; 76(909):590-599.
[209]
Izadifar Z, Izadifar Z, Chapman D, Babyn P. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. J Clin Med 2020; 9(2):460.
[210]
Alcalá E, Encabo L, Barroso F, Puentes A, Risco I, Risco R. Sound waves for solving the problem of recrystallization in cryopreservation. Sci Rep 2023; 13(1):7603.
[211]
Shore D, Woods MO, Miles CA. Attenuation of ultrasound in post rigor bovine skeletal muscle. Ultrasonics 1986; 24(2):81-87.
[212]
Evans S, Penfold J. Thermal runaway in electromagnetic heating with application to the reheating of cryopreserved bio materials. J Microw Power Electromagn Energy 1993; 28(2):84-92.
[213]
Encabo L, Alcala E, Lopez-Soria J, Barroso F, Gonzalez-Suero C, Jimenez JJ, et al. HIFU rewarming of organs after cold preservation: ex vivo assessment of heart performance in murine model. Transplantation 2024; 108(1):e15-e17.
[214]
Rubinsky B, Cravalho EG. Transient mass transfer processes during the perfusion of a biological organ with a cryophylactic agent solution. Cryobiology 1982; 19(1):70-82.
[215]
Lee CYC, Rubinsky B. A multi-dimensional model of momentum and mass transfer in the liver. Int J Heat Mass Transf 1989; 32(12):2421-2434.
[216]
Lachenbruch CA, Diller KR. A network thermodynamic model of kidney perfusion. IFAC Proc 1994; 27(1):289-290.
[217]
Fahy GM. Analysis of “solution effects” injury. Equations for calculating phase diagram information for the ternary systems NaCl–dimethylsulfoxide–water and NaCl–glycerol–water. Biophys J 1980; 32(2):837-850.
[218]
Lovelock JE. The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta 1953; 10:414-426.
[219]
Fahy GM, Wowk B, Wu J, Paynter S. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 2004; 48(1):22-35.
[220]
Jomha NM, Weiss ADH, Fraser J Forbes, Law GK, Elliott JAW, McGann LE. Cryoprotectant agent toxicity in porcine articular chondrocytes. Cryobiology 2010; 61(3):297-302.
[221]
Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, et al. Molecular design of polyampholytes for vitrification-induced preservation of three-dimensional cell constructs without using liquid nitrogen. Biomacromolecules 2020; 21(8):3017-3025.
[222]
Panconesi R, Flores M Carvalho, Mueller M, Meierhofer D, Dutkowski P, Muiesan P, et al. Viability assessment in liver transplantation—what is the impact of dynamic organ preservation?. Biomedicines 2021; 9(2):161.
[223]
Lau NS, Ly M, Dennis C, Jacques A, Cabanes-Creus M, Toomath S, et al. Long-term ex situ normothermic perfusion of human split livers for more than 1 week. Nat Commun 2023; 14:4755.
[224]
Berendsen TA, Bruinsma BG, Puts CF, Saeidi N, Usta OB, Uygun BE, et al. Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med 2014; 20(7):790-793.
[225]
Wilson GW, Allen JD, Martinu T, Juvet S, Liu M, Cypel M, et al. Deconvolution of donor and recipient transcripts from frozen lung transplant biopsies. J Heart Lung Transplant 2020; 39(4):S114-S115.
[226]
Clark EA, Opelz G, Mickey MR, Terasaki PI. Evaluation of Belzer and Collins kidney-preservation methods. Lancet 1973; 1(7799):361-364.
[227]
Ploeg RJ, van JH Bockel, Langendijk PT, Groenewegen M, van FJ der Woude, Persijn GG, et al. Effect of preservation solution on results of cadaveric kidney transplantation. Lancet 1992; 340(8812):129-137.
[228]
Ireland R. HTK solution: should it replace UW solution for kidney preservation?. Nat Rev Nephrol 2009; 5(8):429.
[229]
Lewis JK, Bischof JC, Braslavsky I, Brockbank KGM, Fahy GM, Fuller BJ, et al. The Grand Challenges of Organ Banking: proceedings from the first global summit on complex tissue cryopreservation. Cryobiology 2016; 72(2):169-182.
[230]
Voigt MR, DeLario GT. Perspectives on abdominal organ preservation solutions: a comparative literature review. Prog Transplant 2013; 23(4):383-391.
[231]
Tingle SJ, Figueiredo RS, Moir JAG, Goodfellow M, Talbot D, Wilson CH. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev 2019; 3(3):CD011671.
[232]
Schipper DA, Marsh KM, Ferng AS, Duncker DJ, Laman JD, Khalpey Z. The critical role of bioenergetics in donor cardiac allograft preservation. J Cardiovasc Transl Res 2016; 9(3):176-183.
[233]
Mellati A, Lo L Faro, Dumbill R, Meertens P, Rozenberg K, Shaheed S, et al. Kidney normothermic machine perfusion can be used as a preservation technique and a model of reperfusion to deliver novel therapies and assess inflammation and immune activation. Front Immunol 2022; 13:850271.
[234]
Hosgood SA, Brown RJ, Nicholson ML. Advances in kidney preservation techniques and their application in clinical practice. Transplantation 2021; 105(11):e202-e214.
[235]
Bellini MI, Tortorici F, Amabile MI, D V’Andrea. Assessing kidney graft viability and its cells metabolism during machine perfusion. Int J Mol Sci 2021; 22(3):1121.
[236]
De J Deken, Kocabayoglu P, Moers C. Hypothermic machine perfusion in kidney transplantation. Curr Opin Organ Transplant 2016; 21(3):294-300.
[237]
Rogers N, Wyburn K. Compare trial: new hope for organ preservation. Lancet 2020; 396(10263):1609-1611.
[238]
Wszola M, Kosieradzki M, Kwiatkowski A, Bieniasz M, Ostrowski K, Domagala P, et al. Preservation of kidneys in machine perfusion (MP) limits ischemia/reperfusion injury. Transplantation 2008; 86(2S):82-83.
[239]
Sacks S, Petritsch P, Kaufman J. Canine kidney preservation using a new perfusate. Lancet 1973; 301(7811):1024-1028.
[240]
Monzen K, Hosoda T, Hayashi D, Imai Y, Okawa Y, Kohro T, et al. The use of a supercooling refrigerator improves the preservation of organ grafts. Biochem Biophys Res Commun 2005; 337(2):534-539.
[241]
Kheirabadi BS, Fahy GM. Permanent life support by kidneys perfused with a vitrifiable (7.5 molar) cryoprotectant solution. Transplantation 2000; 70(1):51-57.
[242]
Arnaud FG, Khirabadi B, Fahy GM. Physiological evaluation of a rabbit kidney perfused with VS41A. Cryobiology 2003; 46(3):289-294.
[243]
Burnstock G. Purinergic signalling: therapeutic developments. Front Pharmacol 2017; 8:661.
[244]
Maione F, Gilbo N, Lazzaro S, Friend P, Camussi G, Romagnoli R, et al. Porcine isolated liver perfusion for the study of ischemia reperfusion injury. Transplantation 2018; 102(7):1039-1049.
[245]
Yu B, Zhang Y, Wang T, Guo J, Kong C, Chen Z, et al. MAPK signaling pathways in hepatic ischemia/reperfusion injury. J Inflamm Res 2023; 16:1405-1418.
[246]
Longhi MS, Robson SC, Bernstein SH, Serra S, Deaglio S. Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J Mol Med 2013; 91(2):165-172.
[247]
Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001; 94(6):1133-1138.
[248]
Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP. The role of succinate and ROS in reperfusion injury—a critical appraisal. J Mol Cell Cardiol 2017; 110:1-14.
[249]
Bruinsma BG, Uygun K. Subzero organ preservation: the dawn of a new ice age?. Curr Opin Organ Transplant 2017; 22(3):281-286.
[250]
Maliszewski CR, Delespesse GJ, Schoenborn MA, Armitage RJ, Fanslow WC, Nakajima T, et al. The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J Immunol 1994; 153(8):3574-3583.
[251]
Panayotova GG, Lunsford KE, Quillin RCI, Rana A, Agopian VG, Lee-Riddle GS, et al. Portable hypothermic oxygenated machine perfusion for organ preservation in liver transplantation: a randomized, open-label, clinical trial. Hepatology 2024; 79(5):1033-1047.
[252]
Dutkowski P, Polak WG, Muiesan P, Schlegel A, Verhoeven CJ, Scalera I, et al. First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg 2015; 262(5):764-771.
[253]
Ravikumar R, Jassem W, Mergental H, Heaton N, Mirza D, Perera MTPR, et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant 2016; 16(6):1779-1787.
[254]
Quintini C, Liu Q. Disrupting the field of organ preservation: normothermic preservation in liver transplantation. Transplantation 2018; 102(11):1783-1785.
[255]
Eshmuminov D, Becker D, Bautista L Borrego, Hefti M, Schuler MJ, Hagedorn C, et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat Biotechnol 2020; 38(2):189-198.
[256]
Clavien PA, Dutkowski P, Mueller M, Eshmuminov D, Bautista L Borrego, Weber A, et al. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat Biotechnol 2022; 40(11):1610-1616.
[257]
Demmy TL, Biddle JS, Bennett LE, Walls JT, Schmaltz RA, Curtis JJ. Organ preservation solutions in heart transplantation—patterns of usage and related survival. Transplantation 1997; 63(2):262-269.
[258]
Wicomb WN, Collins GM. 24-hour rabbit heart storage with UW solution: effects of low-flow perfusion, colloid, and shelf storage. Transplantation 1989; 48(1):6-8.
[259]
Ganote C, Armstrong S. Ischaemia and the myocyte cytoskeleton: review and speculation. Cardiovasc Res 1993; 27(8):1387-1403.
[260]
Katz AM, Tada M. The “stone heart”: a challenge to the biochemist. Am J Cardiol 1972; 29(4):578-580.
[261]
Tran DT, Dong C, Alawieh A, Beeson G, Atkinson C, Nadig SN. Static cold storage induces metabolic alterations and autophagy in models of cardiac transplantation. J Heart Lung Transplant 2017; 36(4 Suppl):S373-S374.
[262]
Lerman JB, Agarwal R, Patel CB, Keenan JE, Casalinova S, Milano CA, et al. Donor heart recovery and preservation modalities in 2024. JACC: Heart Fail 2024; 12(3):427-437.
[263]
Banner NR, Thomas HL, Curnow E, Hussey JC, Rogers CA, Bonser RS. The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation 2008; 86(4):542-547.
[264]
Chang DH, Kobashigawa JA. Current diagnostic and treatment strategies for cardiac allograft vasculopathy. Expert Rev Cardiovasc Ther 2015; 13(10):1147-1154.
[265]
Chambers DJ, Fallouh HB. Cardioplegia and cardiac surgery: pharmacological arrest and cardioprotection during global ischemia and reperfusion. Pharmacol Ther 2010; 127(1):41-52.
[266]
Linask J, Votta J, Willis M. Perfusion preservation of hearts for 6 to 9 days at room temperature. Science 1978; 199(4326):299-301.
[267]
Nutt MP, Fields BL, Sebree LA, Southard JH, Pyzalska D, Pyzalski R, et al. Assessment of function, perfusion, metabolism, and histology in hearts preserved with University of Wisconsin solution. Circulation 1992; 86(5 Suppl):II333-II338.
[268]
Novick WM, Wallace HW, Root KL, Rozanski DJ, Fuller EO. Preservation of donor heart function and high-energy stores by continuous perfusion with synthetic plasma at 22 degrees C. Circulation 1986; 74(5 Pt 2):III80-III88.
[269]
Nilsson J, Jernryd V, Qin G, Paskevicius A, Metzsch C, Sjöberg T, et al. A nonrandomized open-label phase 2 trial of nonischemic heart preservation for human heart transplantation. Nat Commun 2020; 11:2976.
[270]
Proctor ES, Parker R. Preservation of isolated heart for 72 hours. BMJ 1968; 4(5626):296-298.
[271]
Wicomb WN, Cooper DKC, Novitzky D, Barnard CN. Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. Ann Thorac Surg 1984; 37(3):243-248.
[272]
McLeod JS, Poling C, Church JT, Jung J, Sarosi E, Langley M, et al. Ex vivo heart perfusion for 72 hours using plasma cross circulation. ASAIO J 2020; 66(7):753-759.
[273]
Oz MC, Pinsky DJ, Koga S, Liao H, Marboe CC, Han D, et al. Novel preservation solution permits 24-hour preservation in rat and baboon cardiac transplant models. Circulation 1993; 88(5 Pt 2):II291-II297.
[274]
Kaliyev R, Bekbossynov S, Nurmykhametova Z. Sixteen-hour ex vivo donor heart perfusion during long-distance transportation for heart transplantation. Artif Organs 2019; 43(3):319-320.
[275]
Ius F, Schibilsky D, Sponga S, Rojas SV, Benk C, Guzzi G, et al.Heart preservation with the organ care system in extended criteria donor hearts: a three-center experience. J Heart Lung Transpl, 39 (4 Suppl) (2020), p. S265.
[276]
Kaliyev R, Bekbossynov S, Nurmykhametova Z. Sixteen-hour ex vivo donor heart perfusion during long-distance transportation for heart transplantation. Artif Organs 2019; 43(3):319-320.
[277]
de M Perrot, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med 2003; 167(4):490-511.
[278]
Yeung JC, Krueger T, Yasufuku K, de M Perrot, Pierre AF, Waddell TK, et al. Outcomes after transplantation of lungs preserved for more than 12 h: a retrospective study. Lancet Respir Med 2017; 5(2):119-124.
[279]
Kondo T, Chen F, Ohsumi A, Hijiya K, Motoyama H, Sowa T, et al. β2-adrenoreceptor agonist inhalation during ex vivo lung perfusion attenuates lung injury. Ann Thorac Surg 2015; 100(2):480-486.
[280]
Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91(10):3527-3561.
[281]
Boutilier RG. Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 2001; 204(18):3171-3181.
[282]
Acker JP. Biopreservation of cells and engineered tissues. Adv Biochem Eng Biotechnol 2007; 103:157-187.
[283]
Huckabee WE. Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glucose and of hyperventilation. J Clin Invest 1958; 37(2):244-254.
[284]
Pinton P, Ferrari D, Rapizzi E, Di F Virgilio, Pozzan T, Rizzuto R. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 2001; 20(11):2690-2701.
[285]
Jia Z, Chen Q, Qin H. Ischemia-induced apoptosis of intestinal epithelial cells correlates with altered integrin distribution and disassembly of F-actin triggered by calcium overload. J Biomed Biotechnol 2012; 2012:617539.
[286]
Baust JM, Vogel MJ, Snyder KK, van RG Buskirk, Baust JG. Activation of mitochondrial-associated apoptosis contributes to cryopreservation failure. Cell Preserv Technol 2007; 5(3):155-164.
[287]
Steen S, Sjöberg T, Pierre L, Liao Q, Eriksson L, Algotsson L. Transplantation of lungs from a non-heart-beating donor. Lancet 2001; 357(9259):825-829.
[288]
Walweel K, Skeggs K, Boon AC, See LE Hoe, Bouquet M, Obonyo NG, et al. Endothelin receptor antagonist improves donor lung function in an ex vivo perfusion system. J Biosci 2020; 27(1):96.
[289]
Cypel M, Yeung JC, Hirayama S, Rubacha M, Fischer S, Anraku M, et al. Technique for prolonged normothermic ex vivo lung perfusion. J Heart Lung Transplant 2008; 27(12):1319-1325.
[290]
Cypel M, Yeung JC, Liu M, Anraku M, Chen F, Karolak W, et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N Engl J Med 2011; 364(15):1431-1440.
[291]
Machuca TN, Cypel M, Keshavjee S. Advances in lung preservation. Surg Clin North Am 2013; 93(6):1373-1394.
[292]
Steinmeyer J, Becker S, Avsar M, Salman J, Höffler K, Haverich A, et al. Cellular and acellular ex vivo lung perfusion preserve functional lung ultrastructure in a large animal model: a stereological study. Respir Res 2018; 19(1):238.
[293]
Becker S, Steinmeyer J, Avsar M, Höffler K, Salman J, Haverich A, et al. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours. Transpl Int 2016; 29(1):88-97.
[294]
Roman M, Gjorgjimajkoska O, Neil D, Nair S, Colah S, Parmar J, et al. Comparison between cellular and acellular perfusates for ex vivo lung perfusion in a porcine model. J Heart Lung Transplant 2015; 34(7):978-987.
[295]
Linacre V, Cypel M, Machuca T, Nakajima D, Hashimoto K, Zamel R, et al. Importance of left atrial pressure during ex vivo lung perfusion. J Heart Lung Transplant 2016; 35(6):808-814.
[296]
Warnecke G, Van D Raemdonck, Smith MA, Massard G, Kukreja J, Rea F, et al. Normothermic ex-vivo preservation with the portable organ care system lung device for bilateral lung transplantation (inspire): a randomised, open-label, non-inferiority, phase 3 study. Lancet Respir Med 2018; 6(5):357-367.
[297]
Lautner LJ, Freed DH, Nagendran J, Acker JP. Current techniques and the future of lung preservation. Cryobiology 2020; 94:1-8.
[298]
Rosner SR, Ram-Mohan S, Paez-Cortez JR, Lavoie TL, Dowell ML, Yuan L, et al. Airway contractility in the precision-cut lung slice after cryopreservation. Am J Respir Cell Mol Biol 2014; 50(5):876-881.
[299]
Baatz JE, Newton DA, Riemer EC, Denlinger CE, Jones EE, Drake RR, et al. Cryopreservation of viable human lung tissue for versatile post-thaw analyses and culture. In Vivo 2014; 28(4):411-423.
[300]
Roth M, Sol Mèr, Hornung M, Emmons LR, Stulz P, Perruchoud AP. Cell cultures from cryopreserved human lung tissue. Tissue Cell 1992; 24(4):455-459.
[301]
Watson CY, Damiani F, Ram-Mohan S, Rodrigues S, de QP Moura, Donaghey TC, et al. Screening for chemical toxicity using cryopreserved precision cut lung slices. Toxicol Sci 2016; 150(1):225-233.
[302]
Ali A, Wang A, Ribeiro RVP, Beroncal EL, Baciu C, Galasso M, et al. Static lung storage at 10 °C maintains mitochondrial health and preserves donor organ function. Sci Transl Med 2021; 13(611):eabf7601.
[303]
Roskott AM, Nieuwenhuijs VB, Dijkstra G, Koudstaal LG, Leuvenink HG, Ploeg RJ. Small bowel preservation for intestinal transplantation: a review. Transpl Int 2011; 24(2):107-131.
[304]
Mangus RS, Tector AJ, Fridell JA, Kazimi M, Hollinger E, Vianna RM. Comparison of histidine–tryptophan–ketoglutarate solution and University of Wisconsin solution in intestinal and multivisceral transplantation. Transplantation 2008; 86(2):298-302.
[305]
Park PO, Haglund U, Bulkley GB, Fält K. The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion. Surgery 1990; 107(5):574-580.
[306]
Tesi RJ, Jaffe BM, McBride V, Haque S. Histopathologic changes in human small intestine during storage in Viaspan organ preservation solution. Arch Pathol Lab Med 1997; 121(7):714-718.
[307]
Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation 1988; 45(4):673-676.
[308]
Kesseli S, Sudan D. Small bowel transplantation. Surg Clin North Am 2019; 99(1):103-116.
[309]
Deitch EA, Xu D, Kaise VL. Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut–lymph hypothesis, a review. FBL 2006; 11(1):520-528.
[310]
Wang C, Li Q, Li J. Gut microbiota and its implications in small bowel transplantation. Front Med 2018; 12(3):239-248.
[311]
Browne BJ, Johnson CP, Roza AM, Adams MB. Endotoxemia after small bowel transplantation. Transplant Proc 1992; 24(3):1107.
[312]
Lai Q, Melandro F, Rossi M, Ruberto F, Pugliese F, Mennini G. Role of perfusion machines in the setting of clinical liver transplantation: a qualitative systematic review. Clin Transplant 2018; 32(8):e13310.
[313]
Zhu JZJ, Castillo EG, Salehi P, Avila J, Lakey JRT, Churchill TA. A novel technique of hypothermic luminal perfusion for small bowel preservation. Transplantation 2003; 76(1):71-76.
[314]
Muñoz-Abraham AS, Patrón-Lozano R, Narayan RR, Judeeba SS, Alkukhun A, Alfadda TI, et al. Extracorporeal hypothermic perfusion device for intestinal graft preservation to decrease ischemic injury during transportation. J Gastrointest Surg 2016; 20(2):313-321.
[315]
Ludwig EL, Abraham N, Schaaf CR, McKinney CA, Freund J, Stewart AS, et al. Comparison of the effects of normothermic machine perfusion and cold storage preservation on porcine intestinal allograft regenerative potential and viability. Am J Transplant 2024; 24(4):564-576.
PDF(5678 KB)

Accesses

Citation

Detail

段落导航
相关文章

/