食品系统与气候变化、空气污染之间的相互作用综述

Chaopeng Hong, Rui Zhong, Mengyao Xu, Peidong He, Huibin Mo, Yue Qin, Danna Shi, Xinlei Chen, Kebin He, Qiang Zhang

工程(英文) ›› 2025, Vol. 44 ›› Issue (1) : 215-233.

PDF(1949 KB)
PDF(1949 KB)
工程(英文) ›› 2025, Vol. 44 ›› Issue (1) : 215-233. DOI: 10.1016/j.eng.2024.12.021
研究论文
Review

食品系统与气候变化、空气污染之间的相互作用综述

作者信息 +

Interactions Among Food Systems, Climate Change, and Air Pollution: A Review

Author information +
History +

Abstract

Food systems are deeply affected by climate change and air pollution, while being key contributors to these environmental challenges. Understanding the complex interactions among food systems, climate change, and air pollution is crucial for mitigating climate change, improving air quality, and promoting the sustainable development of food systems. However, the literature lacks a comprehensive review of these interactions, particularly in the current phase of rapid development in the field. To address this gap, this study systematically reviews recent research on the impacts of climate change and air pollution on food systems, as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution. In addition, this study summarizes various strategies for mitigation and adaptation, including adjustments in agricultural practices and food supply chains. Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions. This review offers a critical overview of current research on the interactions among food systems, climate change, and air pollution and highlights future research directions to support the transition to sustainable food systems.

Keywords

Food systems / Climate change / Air pollution / Interactions / Systematic review

引用本文

导出引用
Chaopeng Hong, Rui Zhong, Mengyao Xu. 食品系统与气候变化、空气污染之间的相互作用综述. Engineering. 2025, 44(1): 215-233 https://doi.org/10.1016/j.eng.2024.12.021

参考文献

[1]
Rosenzweig C, Mbow C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, et al. Climate change responses benefit from a global food system approach. Nat Food 2020; 1(2):94-97.
[2]
Wheeler T, von J Braun. Climate change impacts on global food security. Science 2013; 341:508-513.
[3]
Crippa M, Solazzo E, Guizzardi D, Van R Dingenen, Leip A. Air pollutant emissions from global food systems are responsible for environmental impacts, crop losses and mortality. Nat Food 2022; 3(11):942-956.
[4]
Ivanovich CC, Sun T, Gordon DR, Ocko IB. Future warming from global food consumption. Nat Clim Chang 2023; 13(3):297-302.
[5]
Zurek M, Hebinck A, Selomane O. Climate change and the urgency to transform food systems. Science 2022; 376:1416-1421.
[6]
Rezaei EE, Webber H, Asseng S, Boote K, Durand JL, Ewert F, et al. Climate change impacts on crop yields. Nat Rev Earth Environ 2023; 4(12):831-846.
[7]
Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 2014; 111(9):3268-3273.
[8]
Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Prioritizing climate change adaptation needs for food security in 2030. Science 2008; 319:607-610.
[9]
Bezner R Kerr, Hasegawa T, Lasco R, Bhatt I, Deryng D, Farrell A, et al. Food, fibre, and other ecosystem products. H.O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría (Eds.), Climate change 2022: impacts, adaptation and vulnerability, Cambridge University Press, London (2022), pp. 713-906.
[10]
Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science 2011; 333:616-620.
[11]
Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, et al. Solutions for a cultivated planet. Nature 2011; 478(7369):337-342.
[12]
Birkmann JE, Liwenga R, Pandey E, Boyd R, Djalante F, Gemenne W, et al. (Eds.), Climate change 2022: impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change., Cambridge University Press, Cambridge (2022), pp. 1171-1274.
[13]
Avnery S, Mauzerall DL, Liu J, Horowitz LW. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos Environ 2011; 45(13):2284-2296.
[14]
He L, Wei J, Wang Y, Shang Q, Liu J, Yin Y, et al. Marked impacts of pollution mitigation on crop yields in China. Earth’s Futur 2022; 10(11):1-13.
[15]
Allen RJ, Landuyt W, Rumbold ST. An increase in aerosol burden and radiative effects in a warmer world. Nat Clim Chang 2016; 6(3):269-274.
[16]
Hong C, Zhang Q, Zhang Y, Davis SJ, Tong D, Zheng Y, et al. Impacts of climate change on future air quality and human health in China. Proc Natl Acad Sci 2019; 116(35):17193-17200.
[17]
Levy H II, Horowitz LW, Schwarzkopf MD, Ming Y, Golaz JC, Naik V, et al. The roles of aerosol direct and indirect effects in past and future climate change. J Geophys Res Atmos 2013; 118(10):4521-4532.
[18]
Clark MA, Domingo NGGG, Colgan K, Thakrar SK, Tilman D, Lynch J, et al. Global food system emissions could preclude achieving the 1.5 and 2 °C climate change targets. Science 2020; 370:705-708.
[19]
Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food 2021; 2(3):198-209.
[20]
Tubiello FN, Karl K, Flammini A, Gütschow J, Obli-Laryea G, Conchedda G, et al. Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst Sci Data 2022; 14(4):1795-1809.
[21]
Intergovernmental Panel on Climate Change (IPC C). Climate change 2021—the physical science basis. Report. Geneva: IPCC; 2021.
[22]
Vermeulen SJ, Campbell BM, Ingram JSI. Climate change and food systems. Annu Rev Environ Resour 2012; 37(1):195-222.
[23]
Food and Agriculture Organization of the United Nations (FA O). The future of food and agriculture: alternative pathways to 2050. Report. Rome: FAO; 2018.
[24]
Searchinger T, Waite R, Hanson C, Ranganathan J, Dumas P, Matthews E, et al. Creating a sustainable food future: a menu of solutions to feed nearly 10 billion people by 2050. Final report. World Resources Institute, Washington, DC (2019).
[25]
Foong A, Pradhan P, Frör O, Kropp JP. Adjusting agricultural emissions for trade matters for climate change mitigation. Nat Commun 2022; 13(1):3024.
[26]
Ndondo JTK, Review of the Food and Agriculture Organisation (FA O). Strategic priorities on food safety 2023. In: Ahmad RS, editor. Food safety-new insights. London: IntechOpen; 2023.
[27]
Frank S, Havlík P, Stehfest E, van H Meijl, Witzke P, P Iérez-Domínguez, et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat Clim Chang 2019; 9(1):66-72.
[28]
Smith P. Soil carbon sequestration and biochar as negative emission technologies. Glob Change Biol 2016; 22(3):1315-1324.
[29]
Sutton MA, Howard CM, Mason KE, Brownlie WJ, Cordovil C. Nitrogen opportunities for agriculture, food & environment: UNECE guidance document on integrated sustainable nitrogen management. Report. London: UK Centre for Ecology Hydrology; 2022.
[30]
Lindblom J, Lundström C, Ljung M, Jonsson A. Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precis Agric 2017; 18(3):309-331.
[31]
Rogelj J, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, et al. Mitigation pathways compatible with 1.5 °C in the context of sustainable development. V.P. Masson-Delmotte, H.O. Zhai, D. Pörtner, J. Roberts, P.R. Skea, A. Shukla (Eds.), Global Warming of 1.5 °C, Intergovernmental Panel on Climate Change, Geneva 2018; 93-174.
[32]
Roe S, Streck C, Beach R, Busch J, Chapman M, Daioglou V, et al. Land-based measures to mitigate climate change: potential and feasibility by country. Glob Change Biol 2021; 27(23):6025-6058.
[33]
Qian H, Zhu X, Huang S, Linquist B, Kuzyakov Y, Wassmann R, et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat Rev Earth Environ 2023; 4(10):716-732.
[34]
Jiang Y, Carrijo D, Huang S, Chen JI, Balaine N, Zhang W, et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. F Crop Res 2019; 234:47-54.
[35]
Wang Y, Yao Z, Zhan Y, Zheng X, Zhou M, Yan G, et al. Potential benefits of liming to acid soils on climate change mitigation and food security. Glob Change Biol 2021; 27(12):2807-2821.
[36]
Gu W, Wang F, Siebert S, et al. The asymmetric impacts of international agricultural trade on water use scarcity, inequality and inequity. Nat Water 2024; 2:324-336.
[37]
Qin Y, Hong C, Zhao H, et al. Snowmelt risk telecouplings for irrigated agriculture. Nat Clim Chang 2022; 12:1007-1015.
[38]
Qin Y, Mueller ND, Siebert S, et al. Flexibility and intensity of global water use. Nat Sustain 2019; 2:515-523.
[39]
Nabuurs GJ, Mrabet R, Hatab AA, Bustamante M, Clark H, Havlik P, et al. Agriculture, forestry and other land uses (AFOLU). Climate change 2022: mitigation of climate change, Intergovernmental Panel on Climate Change, Geneva 2022; 747-860.
[40]
Hou Y, Velthof GL, Oenema O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Glob Change Biol 2015; 21(3):1293-1312.
[41]
Shi L, Simplicio WS, Wu G, Hu Z, Hu H, Zhan X. Nutrient recovery from digestate of anaerobic digestion of livestock manure: a review. Curr Pollut Rep 2018; 4(2):74-83.
[42]
Clark MA, Domingo NG, Colgan K, Thakrar SK, Tilman D, Lynch J. Global food system emissions could preclude achieving the 1.5 and 2 °C climate change targets. Science 2020; 370(6517):705-708.
[43]
Liu X, Desai AR. Significant reductions in crop yields from air pollution and heat stress in the United States. Earths Future 2021; 9(8):e2021EF002000.
[44]
Yang Y, Tilman D, Jin Z, Smith P, Barrett CB, Zhu YG. Climate change exacerbates the environmental impacts of agriculture. Science 2024; 385(6713):eadn3747.
[45]
Crippa M, Solazzo E, GuizzardiD MF, Tubiello FN, Leip AJNF. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food 2021; 2(3):198-209.
[46]
Burney J, Ramanathan V. Recent climate and air pollution impacts on Indian agriculture. Proc Natl Acad Sci 2014; 111(46):16319-16324.
[47]
Zhou H, Yue X, Lei Y, Tian C, Zhu J, Ma Y, et al. Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect. Atmos Chem Phys 2022; 22(1):693-709.
[48]
Hong C, Mueller ND, Burney JA, Zhang Y, AghaKouchak A, Moore FC, et al. Impacts of ozone and climate change on yields of perennial crops in California. Nat Food 2020; 1(3):166-172.
[49]
Varma V, Bebber DP. Climate change impacts on banana yields around the world. Nat Clim Chang 2019; 9:752-757.
[50]
Long SP, Ainsworth EA, Leakey AD, Nosberger J, Ort DR. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006; 312:1918-1921.
[51]
Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, et al. Increasing CO2 threatens human nutrition. Nature 2014;510(7503):139–42.
[52]
Malikov E, Miao R, Zhang J. Distributional and temporal heterogeneity in the climate change effects on US agriculture. J Environ Econ Manag 2020; 104:102386.
[53]
Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, et al. Uncertainty in simulating wheat yields under climate change. Nat Clim Change 2013; 3(9):827-832.
[54]
Zhao C, Stockle CO, Karimi T, Nelson RL, van FK Evert, Pronk AA, et al. Potential benefits of climate change for potatoes in the United States. Environ Res Lett 2022; 17(10):104034.
[55]
Wang B, Jägermeyr J, O GJ’Leary, Wallach D, Ruane AC, Feng P, et al. Pathways to identify and reduce uncertainties in agricultural climate impact assessments. Nat Food 2024; 5(7):550-556.
[56]
Franke JA, Muller C, Elliott J, Ruane AC, Jagermeyr J, Snyder A, et al. The GGCMI phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0). Geosci Model Dev 2020; 13(9):3995-4018.
[57]
Gulev SK, Thorne PW, Ahn J, Dentener FJ, Domingues CM, Gerland S, et al. Changing state of the climate system. V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger (Eds.), Climate change 2021—the physical science basis, Cambridge University Press, London 2023; 287-422.
[58]
Tan Q, Liu Y, Dai L, Pan T. Shortened key growth periods of soybean observed in China under climate change. Sci Rep 2021; 11(1):8197.
[59]
Zhang S, Tao F, Zhang Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur J Agron 2014; 54:70-83.
[60]
Liu Y, Chen Q, Ge Q, Dai J, Qin Y, Dai L, et al. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agric Meteorol 2018; 248:518-526.
[61]
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 2017; 114(35):9326-9331.
[62]
Jägermeyr J, Mueller C, Ruane AC, Elliott J, Balkovic J, Castillo O, et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat Food 2021; 2:875.
[63]
Hasegawa T, Wakatsuki H, Ju H, Vyas S, Nelson GC, Farrell A, et al. A global dataset for the projected impacts of climate change on four major crops. Sci Data 2022; 9(1):58.
[64]
Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N. A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 2014; 4(4):287-291.
[65]
Mohammadi S, Rydgren K, Bakkestuen V, Gillespie MAK. Impacts of recent climate change on crop yield can depend on local conditions in climatically diverse regions of Norway. Sci Rep 2023; 13(1):3633.
[66]
Agnolucci P, De V Lipsis. Long-run trend in agricultural yield and climatic factors in Europe. Clim Change 2020; 159(3):385-405.
[67]
Meng Q, Hou P, Lobell DB, Wang H, Cui Z, Zhang F, et al. The benefits of recent warming for maize production in high latitude China. Clim Change 2014; 122(1–2):341-349.
[68]
Wang H, Hijmans RJ. Climate change and geographic shifts in rice production in China. Environ Res Commun 2019; 1(1):011008.
[69]
Zheng C, Zhang J, Chen J, Chen C, Tian Y, Deng A, et al. Nighttime warming increases winter-sown wheat yield across major Chinese cropping regions. F Crop Res 2017; 214:202-210.
[70]
Lobell DB, Field CB. Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Glob Change Biol 2008; 14(1):39-45.
[71]
McGrath JM, Lobell DB. Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ Res Lett 2013; 8(1):014054.
[72]
Ueyama M, Ichii K, Kobayashi H, Kumagai TO, Beringer J, Merbold L, et al. Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. Environ Res Lett. 2020; 15(8):084009.
[73]
Toreti A, Deryng D, Tubiello FN, Muller C, Kimball BA, Moser G, et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat Food 2020; 1(12):775-782.
[74]
Kimball BA. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol 2016; 31:36-43.
[75]
Long SP, Ainsworth EA, Rogers A, Ort DR. Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 2004; 55(1):591-628.
[76]
Kimball BA. Lessons from FACE: CO2 effects and interactions with water, nitrogen and temperature. Handbook of climate change and agroecosystems–impacts, adapt mitigation, Imperial College Press, London 2010; 87-107.
[77]
Purcell C, Batke SP, Yiotis C, Caballero R, Soh WK, Murray M, et al. Increasing stomatal conductance in response to rising atmospheric CO2. Ann Bot 2018; 121(6):1137-1149.
[78]
Kumar L, Chhogyel N, Gopalakrishnan T, Hasan MK, Jayasinghe SL, Kariyawasam CS, et al. Climate change and future of agri-food production. R. Bhat (Ed.), Future foods global trends, opportunities, and sustainability challenges, Academic Press, London 2022; 49-79.
[79]
Lobell DB, Field CB. Global scale climate—crop yield relationships and the impacts of recent warming. Environ Res Lett 2007; 2(1):014002.
[80]
Tebaldi C, Lobell DB. Towards probabilistic projections of climate change impacts on global crop yields. Geophys Res Lett 2008; 35(8):307-315.
[81]
Li N, Zhao Y, Han J, Yang Q, Liang J, Liu X, et al. Impacts of future climate change on rice yield based on crop model simulation—a meta-analysis. Sci Total Environ 2024; 949:175038.
[82]
Tardieu F, Simonneau T, Muller B. The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu Rev Plant Biol 2018; 69:733-759.
[83]
Pan J, Sharif R, Xu X, Chen X. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci 2021; 11:627331.
[84]
Tian L, Zhang Y, Chen P, Zhang F, Li J, Yan F, et al. How does the waterlogging regime affect crop yield?. A global meta-analysis. Front Plant Sci 2021; 12:634898.
[85]
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 2009; 29:185-212.
[86]
Daryanto S, Wang L, Jacinthe PA. Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric Water Manage 2017; 179:18-33.
[87]
Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts RA, Carrao H, et al. Global changes in drought conditions under different levels of warming. Geophys Res Lett 2018; 45(7):3285-3296.
[88]
Ukkola AM, De MG Kauwe, Roderick ML, Abramowitz G, Pitman AJ. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys Res Lett 2020; 47(11):e2020GL087820.
[89]
Lesk C, Anderson W, Rigden A, Coast O, Jägermeyr J, McDermid S, et al. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat Rev Earth Environ 2022; 3:872-889.
[90]
Lesk C, Coffel E, Winter J, Ray D, Zscheischler J, Seneviratne IS, et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat Food 2021; 2:683-691.
[91]
Hoffman AL, Kemanian AR, Forest CE. The response of maize, sorghum, and soybean yield to growing-phase climate revealed with machine learning. Environ Res Lett 2020; 15(9):094013.
[92]
Fan Y, Tjiputra J, Muri H, Lombardozzi D, Park CE, Wu S, et al. Solar geoengineering can alleviate climate change pressures on crop yields. Nat Food 2021; 2(5):373-381.
[93]
Heino M, Puma MJ, Ward PJ, Gerten D, Heck V, Siebert S, et al. Two-thirds of global cropland area impacted by climate oscillations. Nat Commun 2018; 9(1):1257.
[94]
Anderson WB, Seager R, Baethgen W, Cane M, You L. Synchronous crop failures and climate-forced production variability. Sci Adv 2019; 5:eaaw1976.
[95]
Iizumi T, Luo JJ, Challinor AJ, Sakurai G, Yokozawa M, Sakuma H, et al. Impacts of EI Niño Southern Oscillation on the global yields of major crops. Nat Commun 2014; 5(1):3712.
[96]
Anderson WB, Han E, Baethgen W, Goddard L, ÁMuñoz G, Robertson AW. The Madden–Julian oscillation affects maize yields throughout the tropics and subtropics. Geophys Res Lett 2020; 47:e2020GL087004.
[97]
Schillerberg TA, Tian D, Miao R. Spatiotemporal patterns of maize and winter wheat yields in the United States: predictability and impact from climate oscillations. Agric Meteorol 2019; 275:208-222.
[98]
Tai APK, Martin MV, Heald CL. Threat to future global food security from climate change and ozone air pollution. Nat Clim Chang 2014; 4(9):817-821.
[99]
Zeng G, Pyle JA, Young PJ. Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 2008; 8(2):369-387.
[100]
Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, et al. Global distribution and trends of tropospheric ozone: an observation-based review. Elementa 2014; 2:29.
[101]
Lu X, Hong J, Zhang L, Cooper OR, Schultz MG, Xu X, et al. Severe surface ozone pollution in China: a global perspective. Environ Sci Technol Lett 2018; 5:487-494.
[102]
Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, et al. The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 2009; 51(4):337-351.
[103]
Feng Z, Xu Y, Kobayashi K, Dai L, Zhang T, Agathokleous E, et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat Food 2022; 3:47-56.
[104]
Van R Dingenen, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 2009; 43(3):604-618.
[105]
Tai APK, Sadiq M, Pang JYS, Yung DHY, Feng Z. Impacts of surface ozone pollution on global crop yields: comparing different ozone exposure metrics and incorporating co-effects of CO2. Front Sustain Food Syst 2021; 5:534616.
[106]
Schauberger B, Rolinski S, Schaphoff S, Müller C. Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects. Agric Meteorol 2019; 265:1-15.
[107]
Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, Uddling J, et al. Ozone pollution will compromise efforts to increase global wheat production. Glob Change Biol 2018; 24(8):3560-3574.
[108]
Avnery S, Mauzerall DL, Liu J, Horowitz LW. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 2011; 45(13):2297-2309.
[109]
Leung F, Sitch S, Tai APK, Wiltshire AJ, Gornall JL, Folberth GA, et al. CO2 fertilization of crops offsets yield losses due to future surface ozone damage and climate change. Environ Res Lett 2022; 17(7):074007.
[110]
Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258):1204-1222.
[111]
Auffhammer M, Ramanathan V, Vincent JR. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc Natl Acad Sci 2006; 103(52):19668-19672.
[112]
Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009; 458(7241):1014-1017.
[113]
Wang X, Wang C, Wu J, Miao G, Chen M, Chen S, et al. Intermediate aerosol loading enhances photosynthetic activity of croplands. Geophys Res Lett 2021; 48:e2020GL091893.
[114]
Schiferl LD, Heald CL. Particulate matter air pollution may offset ozone damage to global crop production. Atmos Chem Phys 2018; 18(8):5953-5966.
[115]
Behrer AP, Wang S. Current benefits of wildfire smoke for yields in the US Midwest may dissipate by 2050. Environ Res Lett 2024; 19(8):84010.
[116]
Lobell DB, Burney JA. Cleaner air has contributed one-fifth of US maize and soybean yield gains since 1999. Environ Res Lett 2021; 16(7):074049.
[117]
Bell JNB, Honour SL, Power SA. Effects of vehicle exhaust emissions on urban wild plant species. Environ Pollut 2011; 159(8–9):1984-1990.
[118]
World Health Organization (WH O). Effects of nitrogen containing air pollutants: critical levels. Report. Copenhagen: Regional Office for Europe; 2000.
[119]
Kharol SK, Martin RV, Philip S, Vogel S, Henze DK, Chen D, et al. Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides. Geophys Res Lett 2013; 40(5):1021-1026.
[120]
Wang J, Li J, Ye J, Zhao J, Wu Y, Hu J, et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat Commun 2020; 11(1):2844.
[121]
Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys 2015; 15(15):8889-8973.
[122]
Lobell DB, Di S Tommaso, Burney JA. Globally ubiquitous negative effects of nitrogen dioxide on crop growth. Sci Adv 2022; 8(22):eabm9909.
[123]
Murray LT, Leibensperger EM, Mickley LJ, Tai APK. Estimating future climate change impacts on human mortality and crop yields via air pollution. Proc Natl Acad Sci 2024; 121(39):e2400117121.
[124]
McGrath JM, Betzelberger AM, Wang S, Shook E, Zhu XG, Long SP, et al. An analysis of ozone damage to historical maize and soybean yields in the United States. Proc Natl Acad Sci 2015; 112(46):14390-14395.
[125]
Lu C, Leng G, Yu L. Quantifying the indirect effects of different air pollutants on crop yields in North China Plain. Environ Res Lett 2024; 19(2):024002.
[126]
Shindell D, Faluvegi G, Kasibhatla P, Van R Dingenen. Spatial patterns of crop yield change by emitted pollutant. Earths Futur 2019; 7(2):101-112.
[127]
Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, et al. Agriculture, forestry and other land use (AFOLU). In: Climate change 2014: mitigation of climate change. London: Cambridge University Press; 2014. p. 811–922.
[128]
Shukla PR, Skeg J, Buendia EC, Masson-Delmotte V, Pörtner HO, Roberts DC, et al. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Report. Geneva: Intergovernmental Panel on Climate Change (IPCC); 2019.
[129]
Emissions Database for Global Atmospheric Research (EDGA R). Edgar Food: a global emission inventory of GHGs and air pollutants from the food systems. Report. Brussels: European Commission; 2024.
[130]
Food and Agriculture Organization of the United Nations (FA O). How to feed the World in 2050. Report. Rome: FAO; 2019.
[131]
Carlson KM, Gerber JS, Mueller ND, Herrero M, MacDonald GK, Brauman KA, et al. Greenhouse gas emissions intensity of global croplands. Nat Clim Chang 2017; 7(1):63-68.
[132]
Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, et al. Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 2016; 6(5):452-461.
[133]
Food and Agriculture Organization of the United Nations (FA O). Emissions due to agriculture: global, regional and country trends 2000–2018. Report. Rome: FAO; 2020.
[134]
Tubiello FN, Karl K, Flammini A, Gütschow J, Obli-Layrea G, Conchedda G, et al. Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries. Earth Syst Sci Data Discuss 2021; 2021:1-24.
[135]
Tubiello FN, Rosenzweig C, Conchedda G, Karl K, Gütschow J, Xueyao P, et al. Greenhouse gas emissions from food systems: building the evidence base. Environ Res Lett 2021; 16(6):065007.
[136]
Hong C, Burney JA, Pongratz J, Nabel JEMS, Mueller ND, Jackson RB, et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021; 589(7843):554-561.
[137]
Li Y, Zhong H, Shan Y, Hang Y, Wang D, Zhou Y, et al. Changes in global food consumption increase GHG emissions despite efficiency gains along global supply chains. Nat Food 2023; 4(6):483-495.
[138]
Gu B, Zhang L, Van R Dingenen, Vieno M, Van HJ Grinsven, Zhang X, et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 2021; 374:758-762.
[139]
Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, Van JA Aardenne, et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst Sci Data 2018; 10(4):1987-2013.
[140]
Paulot F, Jacob DJ, Pinder RW, Bash JO, Travis K, Henze DK. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J Geophys Res Atmos 2014; 119(7):4343-4364.
[141]
Vira J, Hess P, Melkonian J, Wieder WR. An improved mechanistic model for ammonia volatilization in Earth system models: flow of Agricultural Nitrogen version 2 (FANv2). Geosci Model Dev 2020; 13(9):4459-4490.
[142]
Xu P, Li G, Zheng YY, Fung JCH, Chen A, Zeng Z, et al. Fertilizer management for global ammonia emission reduction. Nature 2024; 626(8000):792-798.
[143]
Balasubramanian S, Domingo NGG, Hunt ND, Gittlin M, Colgan KK, Marshall JD, et al. The food we eat, the air we breathe: a review of the fine particulate matter-induced air quality health impacts of the global food system. Environ Res Lett 2021; 16(10):103004.
[144]
Malley CS, Hicks WK, Kulyenstierna JCI, Michalopoulou E, Molotoks A, Slater J, et al. Integrated assessment of global climate, air pollution, and dietary, malnutrition and obesity health impacts of food production and consumption between 2014 and 2018. Environ Res Commun 2021; 3(7):075001.
[145]
Peters GP. From production-based to consumption-based national emission inventories. Ecol Econ 2008; 65(1):13-23.
[146]
Guan D, Meng J, Reiner DM, Zhang N, Shan Y, Mi Z, et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nat Geosci 2018; 11(8):551-555.
[147]
Mi Z, Zheng J, Meng J, Zheng H, Li X, Coffman DM, et al. Carbon emissions of cities from a consumption-based perspective. Appl Energy 2019; 235:509-518.
[148]
Xu X, Sharma P, Shu S, Lin TS, Ciais P, Tubiello FN, et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat Food 2021; 2(9):724-732.
[149]
Arce G, López LA, Guan D. Carbon emissions embodied in international trade: the post-China era. Appl Energy 2016; 184:1063-1072.
[150]
Wiedmann T, Lenzen M. Environmental and social footprints of international trade. Nat Geosci 2018; 11(5):314-321.
[151]
Barrett J, Peters G, Wiedmann T, Scott K, Lenzen M, Roelich K, et al. Consumption-based GHG emission accounting: a UK case study. Clim Policy 2013; 13(4):451-470.
[152]
Liu Z, Feng K, Hubacek K, Liang S, Anadon LD, Zhang C, et al. Four system boundaries for carbon accounts. Ecol Modell 2015; 318:118-125.
[153]
Wiedmann T. A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecol Econ 2009; 69(2):211-222.
[154]
Feng K, Davis SJ, Sun L, Li X, Guan D, Liu W, et al. Outsourcing CO2 within China. Proc Natl Acad Sci 2013; 110(28):11654-11659.
[155]
Wiebe KS, Gandy S, Lutz C. Policies and consumption-based carbon emissions from a top–down and a bottom–up perspective. Low Carbon Econ 2016; 07(01):21-35.
[156]
Castellani V, Beylot A, Sala S. Environmental impacts of household consumption in Europe: comparing process-based LCA and environmentally extended input-output analysis. J Clean Prod 2019; 240:117966.
[157]
Cucurachi S, Scherer L, Guin Jée, Tukker A. Life cycle assessment of food systems. One Earth 2019; 1(3):292-297.
[158]
Sala S, Castellani V. The consumer footprint: monitoring Sustainable Development Goal 12 with process-based life cycle assessment. J Clean Prod 2019; 240:118050.
[159]
Li M, Jia N, Lenzen M, Malik A, Wei L, Jin Y, et al. Global food-miles account for nearly 20% of total food-systems emissions. Nat Food 2022; 3(6):445-453.
[160]
Virtanen Y, Kurppa S, Saarinen M, Katajajuuri JM, Usva K, Mäenpää I, et al. Carbon footprint of food-approaches from national input–output statistics and a LCA of a food portion. J Clean Prod 2011; 19(16):1849-1856.
[161]
Suszkiw J. Study clarifies US beef’s resource use and greenhouse gas emissions [Internet]. Washington, DC: Agricultural Research Service US Department of Agriculture; 2019 Mar 11 [cited 2024 Mar 1]. Available from: https://www.ars.usda.gov/news-events/news/research-news/2019/study-clarifies-us-beefs-resource-use-and-greenhouse-gas-emissions/.
[162]
Ding N, Liu J, Kong Z, Yan L, Yang J. Life cycle greenhouse gas emissions of Chinese urban household consumption based on process life cycle assessment: exploring the critical influencing factors. J Clean Prod 2019; 210:898-906.
[163]
Hong C, Zhao H, Qin Y, Burney JA, Pongratz J, Hartung K, et al. Land-use emissions embodied in international trade. Science 2022; 376:597-603.
[164]
Behrens P, Kiefte-de JC Jong, Bosker T, Rodrigues JFD, De A Koning, Tukker A. Evaluating the environmental impacts of dietary recommendations. Proc Natl Acad Sci 2017; 114(51):13412-13417.
[165]
Kastner T, Kastner M, Nonhebel S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol Econ 2011; 70(6):1032-1040.
[166]
Kastner T, Schaffartzik A, Eisenmenger N, Erb KH, Haberl H, Krausmann F. Cropland area embodied in international trade: contradictory results from different approaches. Ecol Econ 2014; 104:140-144.
[167]
Hubacek K, Feng K. Comparing apples and oranges: some confusion about using and interpreting physical trade matrices versus multi-regional input–output analysis. Land Use Policy 2016; 50:194-201.
[168]
Bayram H, Rice MB, Abdalati W, Akpinar M Elci, Mirsaeidi M, Annesi-Maesano I, et al. Impact of global climate change on pulmonary health: susceptible and vulnerable populations. Ann Am Thorac Soc 2023; 20(8):1088-1095.
[169]
Bayram H, Bauer AK, Abdalati W, Carlsten C, Pinkerton KE, Thurston GD, et al. Environment, global climate change, and cardiopulmonary health. Am J Respir Crit Care Med 2017; 195(6):718-724.
[170]
van KR Daalen, Tonne C, Semenza JC, Rocklöv J, Markandya A, Dasandi N, et al. The 2024 Europe report of the Lancet Countdown on health and climate change: unprecedented warming demands unprecedented action. Lancet Public Heal 2024; 9(7):e495-e522.
[171]
Jones MW, Peters GP, Gasser T, Andrew RM, Schwingshackl C, Gütschow J, et al. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci Data 2023; 10(1):155.
[172]
Reisinger A, Clark H. How much do direct livestock emissions actually contribute to global warming?. Glob Change Biol 2018; 24(4):1749-1761.
[173]
Lynch J, Cain M, Pierrehumbert R, Allen M. Demonstrating GWP: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ Res Lett ERL 2020; 15(4):044023.
[174]
Vashold L, Crespo CJ. A unified modelling framework for projecting sectoral greenhouse gas emissions. Commun Earth Environ 2024; 5:139.
[175]
Hong C, Gu S. Tracking emissions from food systems. Nat Food 2023; 4(6):454-455.
[176]
Roe S, Streck C, Obersteiner M, Frank S, Griscom B, Drouet L, et al. Contribution of the land sector to a 1.5 °C world. Nat Clim Chang 2019; 9(11):817-828.
[177]
Bruulsema T, Lemunyon J, Herz B. Know your fertilizer rights. Crop Soils, 42 (2009), pp. 13-18.
[178]
Maaz TM, Sapkota TB, Eagle AJ, Kantar MB, Bruulsema TW, Majumdar K. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob Change Biol 2021; 27(11):2343-2360.
[179]
Gu B, Zhang X, Lam SK, Yu Y, Van HJM Grinsven, Zhang S, et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023; 613(7942):77-84.
[180]
Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, et al. Producing more grain with lower environmental costs. Nature 2014; 514(7523):486-489.
[181]
Liu X, Cui Z, Hao T, Yuan L, Zhang Y, Gu B, et al. A new approach to holistic nitrogen management in China. Front Agric Sci Eng 2022; 9:490-510.
[182]
Pan SY, He KH, Lin KT, Fan C, Chang CT. Addressing nitrogenous gases from croplands toward low-emission agriculture. NPJ Clim Atmos Sci 2022; 5(1):43.
[183]
Zhang C, Song X, Zhang Y, Wang D, Rees RM, Ju X. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH3 and N2O emissions in global croplands. Glob Change Biol 2022; 28(14):4409-4422.
[184]
Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The Global Methane Budget 2000–2017. Earth Syst Sci Data. 2020; 12(3):1561-1623.
[185]
Jiao Z, Hou A, Shi Y, Huang G, Wang Y, Chen X. Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community. Commun Soil Sci Plant Anal 2006; 37(13–14):1889-1903.
[186]
Conrad R. Microbial ecology of methanogens and methanotrophs. Adv Agron 2007; 96:1-63.
[187]
Jiang Y, van KJ Groenigen, Huang S, Hungate BA, van C Kessel, Hu S, et al. Higher yields and lower methane emissions with new rice cultivars. Glob Change Biol 2017; 23(11):4728-4738.
[188]
van HACD der Gon, Kropff MJ, Van N Breemen, Wassmann R, Lantin RS, Aduna E, et al. Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc Natl Acad Sci 2002; 99(19):12021-12024.
[189]
Su J, Hu C, Yan X, Jin Y, Chen Z, Guan Q, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 2015; 523(7562):602-606.
[190]
Jiang Y, Liao P, van N Gestel, Sun Y, Zeng Y, Huang S, et al. Lime application lowers the global warming potential of a double rice cropping system. Geoderma 2018; 325:1-8.
[191]
Zhang HM, Liang Z, Li Y, Chen ZX, Zhang JB, Cai ZC, et al. Liming modifies greenhouse gas fluxes from soils: a meta-analysis of biological drivers. Agric Ecosyst Environ 2022; 340:108182.
[192]
Shang Q, Yang X, Gao C, Wu P, Liu J, Xu Y, et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob Change Biol 2011; 17(6):2196-2210.
[193]
Chakraborty D, Ladha JK, Rana DS, Jat ML, Gathala MK, Yadav S, et al. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci Rep 2017; 7(1):9342.
[194]
Rani V, Bhatia A, Kaushik R. Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Sci Total Environ 2021; 775:145826.
[195]
Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E, Rufino MC, et al. Climate change mitigation through livestock system transitions. Proc Natl Acad Sci 2014; 111:3709-3714.
[196]
Frank S, Beach R, Havlík P, Valin H, Herrero M, Mosnier A, et al. Structural change as a key component for agricultural non-CO2 mitigation efforts. Nat Commun 2018; 9(1):1060.
[197]
Casey JA, Kim BF, Larsen J, Price LB, Nachman KE. Industrial food animal production and community health. Curr Environ Health Rep 2015; 2(3):259-271.
[198]
Capper JL, Cady RA, Bauman DE. The environmental impact of dairy production: 1944 compared with 2007. J Anim Sci 2009; 87(6):2160-2167.
[199]
Fischer A, Edouard N, Faverdin P. Precision feed restriction improves feed and milk efficiencies and reduces methane emissions of less efficient lactating Holstein cows without impairing their performance. J Dairy Sci 2020; 103(5):4408-4422.
[200]
Patra AK. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 2012; 184(4):1929-1952.
[201]
Gill M, Smith P, Wilkinson JM. Mitigating climate change: the role of domestic livestock. Animal 2010; 4(3):323-333.
[202]
Stein LY, Lidstrom ME. Greenhouse gas mitigation requires caution. Science 2024; 384:1068-1069.
[203]
Altermann E, Schofield LR, Ronimus RS, Beattie AK, Reilly K. Inhibition of rumen methanogens by a novel archaeal lytic enzyme displayed on tailored bionanoparticles. Front Microbiol 2018; 9:2378.
[204]
Yáñez-Ruiz DR, Abecia L, Newbold CJ. Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front Microbiol 2015; 6:1133.
[205]
Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, Cueva SF, et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc Natl Acad Sci 2022; 119(20):e2111294119.
[206]
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, et al. Invited review: current enteric methane mitigation options. J Dairy Sci 2022; 105(12):9297-9326.
[207]
Guo Y, Ryan U, Feng Y, Xiao L. Association of common zoonotic pathogens with concentrated animal feeding operations. Front Microbiol 2022; 12:810142.
[208]
Klopatek SC, Marvinney E, Duarte T, Kendall A, Yang X, Oltjen JW. Grass-fed vs. grain-fed beef systems: performance, economic, and environmental trade-offs. J Anim Sci 2022; 100:skab374.
[209]
Bouwman L, Goldewijk KK, Van KW Der Hoek, Beusen AHW, Van DP Vuuren, Willems J, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Natl Acad Sci 2013; 110(52):20882-20887.
[210]
Velthof GL, Losada JM. Calculation of nitrous oxide emission from agriculture in the Netherlands: update of emission factors and leaching fraction. Report. Denver: Alterra; 2011.
[211]
Kacprzak M, Mali Kńska, Grosser A, Sobik-Szo Jłtysek, Wystalska K, Dró Dżdż, et al. Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies–environmental aspects. Crit Rev Environ Sci Technol 2023; 53(8):914-938.
[212]
Hoang HG, Thuy BTP, Lin C, Vo DVN, Tran HT, Bahari MB, et al. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: a review. Chemosphere 2022; 300:134514.
[213]
Wang S, Zeng Y. Ammonia emission mitigation in food waste composting: a review. Bioresour Technol 2018; 248:13-19.
[214]
Clarke WP. Cost-benefit analysis of introducing technology to rapidly degrade municipal solid waste. Waste Manag Res 2000; 18:510-524.
[215]
Herrero M, Havlik P, Valin H, Notenbaert A, Rufino MC, Thornton PK, et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci 2013; 110:20888-20893.
[216]
Wang M, Zhang S, Guo X, Xiao L, Yang Y, Luo Y, et al. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat Clim Chang 2024; 14(1):98-105.
[217]
Spohn M, Bagchi S, Biederman LA, Borer ET, Br KAåthen, Bugalho MN, et al. The positive effect of plant diversity on soil carbon depends on climate. Nat Commun 2023; 14(1):6624.
[218]
Ren S, Terrer C, Li J, Cao Y, Yang S, Liu D. Historical impacts of grazing on carbon stocks and climate mitigation opportunities. Nat Clim Chang 2024; 14(4):380-386.
[219]
Yang X, Xiong J, Du T, Ju X, Gan Y, Li S, et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat Commun 2024; 15(1):198.
[220]
Bai Y, Cotrufo MF. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 2022; 377:603-608.
[221]
Smith P, Adams J, Beerling DJ, Beringer T, Calvin KV, Fuss S, et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu Rev Environ Resour 2019; 44(1):255-286.
[222]
Zheng B, Ciais P, Chevallier F, Yang H, Canadell JG, Chen Y, et al. Record-high CO2 emissions from boreal fires in 2021. Science 2023; 379:912-917.
[223]
van IR der Velde, van GR der Werf, Houweling S, Maasakkers JD, Borsdorff T, Landgraf J, et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature 2021; 597(7876):366-369.
[224]
Smith P, Davis SJ, Creutzig F, Fuss S, Minx J, Gabrielle B, et al. Biophysical and economic limits to negative CO2 emissions. Nat Clim Chang 2016; 6(1):42-50.
[225]
Schmidt HP, Kammann C, Hagemann N, Leifeld J, Bucheli TD, Sánchez MA Monedero, et al. Biochar in agriculture—a systematic review of 26 global meta-analyses. Glob Change Biol Bioenergy 2021; 13(11):1708-1730.
[226]
Azzi ES, Karltun E, Sundberg C. Prospective life cycle assessment of large-scale biochar production and use for negative emissions in Stockholm. Environ Sci Technol 2019; 53:8466-8476.
[227]
Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, Amonette JE, et al. Biochar in climate change mitigation. Nat Geosci 2021; 14(12):883-892.
[228]
Weng ZH, Van L Zwieten, Singh BP, Kimber S, Morris S, Cowie A, et al. Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system. Soil Biol Biochem 2015; 90:111-121.
[229]
Weng ZH, Van L Zwieten, Singh BP, Tavakkoli E, Kimber S, Morris S, et al. The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol. Soil Biol Biochem 2018; 118:91-96.
[230]
Fang Y, Singh B, Singh BP. Effect of temperature on biochar priming effects and its stability in soils. Soil Biol Biochem 2015; 80:136-145.
[231]
Luo L, Wang J, Lv J, Liu Z, Sun T, Yang Y, et al. Carbon sequestration strategies in soil using biochar: advances, challenges, and opportunities. Environ Sci Technol 2023; 57:11357-11372.
[232]
Lyu H, Zhang H, Chu M, Zhang C, Tang J, Chang SX, et al. Biochar affects greenhouse gas emissions in various environments: a critical review. L Degrad Dev 2022; 33:3327-3342.
[233]
Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, Estavillo JM, et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci Total Environ 2019; 651:2354-2364.
[234]
Nelissen V, Saha BK, Ruysschaert G, Boeckx P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol Biochem 2014; 70:244-255.
[235]
Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nat Commun 2010; 1(1):56.
[236]
Ye L, Camps-Arbestain M, Shen Q, Lehmann J, Singh B, Sabir M. Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls. Soil Use Manage 2020; 36(1):2-18.
[237]
Dai Y, Zheng H, Jiang Z, Xing B. Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis. Sci Total Environ 2020; 713:136635.
[238]
Deng X, Teng F, Chen M, Du Z, Wang B, Li R, et al. Exploring negative emission potential of biochar to achieve carbon neutrality goal in China. Nat Commun 2024; 15(1):1085.
[239]
Theurl MC, Lauk C, Kalt G, Mayer A, Kaltenegger K, Morais TG, et al. Food systems in a zero-deforestation world: dietary change is more important than intensification for climate targets in 2050. Sci Total Environ 2020; 735:139353.
[240]
Springmann M, Clark M, Mason-D D’Croz, Wiebe K, Bodirsky BL, Lassaletta L, et al. Options for keeping the food system within environmental limits. Nature 2018; 562(7728):519-525.
[241]
Arrieta EM, Gonzalez AD. Impact of current, national dietary guidelines and alternative diets on greenhouse gas emissions in Argentina. Food Policy 2018; 79:58-66.
[242]
Drews M, Larsen MAD, Peña JG Balderrama. Projected water usage and land-use-change emissions from biomass production (2015–2050). Energy Strateg Rev 2020; 29:100487.
[243]
Esteve-Llorens X, Dias AC, Moreira MT, Feijoo G, González-García S. Evaluating the Portuguese diet in the pursuit of a lower carbon and healthier consumption pattern. Clim Change 2020; 162(4):2397-2409.
[244]
Kanter R, Caballero B. Global gender disparities in obesity: a review. Adv Nutr 2012; 3(4):491-498.
[245]
Ivanova D, Barrett J, Wiedenhofer D, Macura B, Callaghan M, Creutzig F. Quantifying the potential for climate change mitigation of consumption options. Environ Res Lett 2020; 15(9):093001.
[246]
Smith P. Do grasslands act as a perpetual sink for carbon?. Glob Change Biol 2014; 20(9):2708-2711.
[247]
Food and Agriculture Organization of the United Nations (FA O). Food wastage footprint full-cost accounting. Final Report. Rome: FA O; 2014.
[248]
Papargyropoulou E, Lozano R, Steinberger JK, Wright N, bin Z Ujang. The food waste hierarchy as a framework for the management of food surplus and food waste. J Clean Prod 2014; 76:106-115.
[249]
Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science 2018; 360:987-992.
[250]
Xue L, Liu X, Lu S, Cheng G, Hu Y, Liu J, et al. China’s food loss and waste embodies increasing environmental impacts. Nat Food 2021; 2(7):519-528.
[251]
Guo Y, Tan H, Zhang L, Liu G, Zhou M, Vira J, et al. Global food loss and waste embodies unrecognized harms to air quality and biodiversity hotspots. Nat Food 2023; 4(8):686-698.
[252]
Li Y, He P, Shan Y, Li Y, Hang Y, Shao S, et al. Reducing climate change impacts from the global food system through diet shifts. Nat Clim Chang 2024; 14(9):943.
[253]
Behnassi M, El M Haiba. Implications of the Russia–Ukraine war for global food security. Nat Hum Behav 2022; 6(6):754-755.
[254]
Fuchs R, Alexander P, Brown C, Cossar F, Henry RC, Rounsevell M. Why the US–China trade war spells disaster for the Amazon. Nature 2019; 567(7749):451-454.
[255]
Baj Bželj, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, et al. Importance of food-demand management for climate mitigation. Nat Clim Chang 2014; 4(10):924-929.
[256]
Varshney RK, Singh VK, Kumar A, Powell W, Sorrells ME. Can genomics deliver climate-change ready crops?. Curr Opin Plant Biol 2018; 45:205-211.
[257]
Varshney RK, Ojiewo C, Monyo E. A decade of Tropical Legumes projects: development and adoption of improved varieties, creation of market-demand to benefit smallholder farmers and empowerment of national programmes in sub-Saharan Africa and South Asia. Plant Breed 2019; 138(4):379-388.
[258]
Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 2016; 14(4):1070-1085.
[259]
Minoli S, Jägermeyr J, Asseng S, Urfels A, Müller C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat Commun 2022; 13(1):7079.
[260]
Sloat LL, Davis SJ, Gerber JS, Moore FC, Ray DK, West PC, et al. Climate adaptation by crop migration. Nat Commun 2020; 11(1):1243.
[261]
Xie W, Zhu A, Ali T, Zhang Z, Chen X, Wu F, et al. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature 2023; 616(7956):300-305.
[262]
Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, et al. Enhancing climate change resilience in agricultural crops. Curr Biol 2023; 33(23):R1246-R1261.
[263]
Zhao S, Schmidt S, Gao H, Li T, Chen X, Hou Y, et al. A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production. Nat Food 2022; 3(9):741-752.
[264]
Folberth C, Khabarov N, Balkovi Jč, Skalsk Rý, Visconti P, Ciais P, et al. The global cropland-sparing potential of high-yield farming. Nat Sustain 2020; 3(4):281-289.
[265]
Jägermeyr J, Pastor A, Biemans H, Gerten D. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nat Commun 2017; 8(1):15900.
[266]
MacDougall AS, Esch E, Chen Q, Carroll O, Bonner C, Ohlert T, et al. Widening global variability in grassland biomass since the 1980s. Nat Ecol Evol 2024; 8:1877-1888.
[267]
Rivera-Ferre MG, López-i-Gelats F, Howden M, Smith P, Morton JF, Herrero M. Re-framing the climate change debate in the livestock sector: mitigation and adaptation options. Wiley Interdiscip Rev Clim Change 2016; 7(6):869-892.
[268]
Watson EE, Kochore HH, Dabasso BH. Camels and climate resilience: adaptation in northern Kenya. Hum Ecol 2016; 44(6):701-713.
[269]
Godde CM, Mason-D D’Croz, Mayberry DE, Thornton PK, Herrero M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob Food Secur 2021; 28:100488.
[270]
Klenk N, Fiume A, Meehan K, Gibbes C. Local knowledge in climate adaptation research: moving knowledge frameworks from extraction to co-production. Wiley Interdiscip Rev Clim Change 2017; 8(5):e475.
[271]
Aggarwal PK, Jarvis A, Campbell BM, Zougmor RBé, Khatri-Chhetri A, Vermeulen SJ, et al. The climate-smart village approach: framework of an integrative strategy for scaling up adaptation options in agriculture. Ecol Soc 2018; 23(1):14.
[272]
Food and Agriculture Organization of the United Nations (FA O). Climate-smart agriculture and the Sustainable Development Goals: mapping interlinkages, synergies and trade-offs and guidelines for integrated implementation. Report. Rome: FA O; 2019.
[273]
Food and Agriculture Organization of the United Nations (FA O). Crops and climate change impact briefs—climate-smart agriculture for more sustainable, resilient, and equitable food systems. Report. Rome: FAO; 2022.
[274]
Biswas A, Maddocks I, Dhar T, Dube L, Dutta A, Talukder B, et al. Guiding sustainable transformations in food systems. Nat Rev Earth Environ 2024; 5:607-608.
[275]
Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P. Climate-smart soils. Nature 2016; 532(7597):49-57.
[276]
Srinivasa C Rao, Gopinath KA, Prasad JVNS, Prasannakumar SAK. Climate resilient villages for sustainable food security in tropical India: concept, process, technologies, institutions, and impacts. Adv Agron 2016; 140:101-214.
[277]
Nabuurs GJ, Delacote P, Ellison D, Hanewinkel M, Hetemäki L, Lindner M. By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 2017; 8(12):484.
[278]
Verkerk PJ, Costanza R, Hetemäki L, Kubiszewski I, Leskinen P, Nabuurs GJ, et al. Climate-smart forestry: the missing link. For Policy Econ 2020; 115:102164.
[279]
Food and Agriculture Organization of the United Nations (FAO). Climate-smart agriculture case studies 2021—projects from around the world. Report. Rome: FAO; 2021.
[280]
Acevedo M, Pixley K, Zinyengere N, Meng S, Tufan H, Cichy K, et al. A scoping review of adoption of climate-resilient crops by small-scale producers in low-and middle-income countries. Nat Plants 2020; 6:1231-1241.
PDF(1949 KB)

Accesses

Citation

Detail

段落导航
相关文章

/