[1] |
Nixon Z, Zengel S, Baker M, Steinhoff M, Fricano G, Rouhani S, et al.Shoreline oiling from the Deepwater Horizon oil spill.Mar Pollut Bull 2016; 107(1):170-178.
|
[2] |
Brette F, Machado B, Cros C, Incardona JP, Scholz NL, Block BA.Crude oil impairs cardiac excitation–contraction coupling in fish.Science 2014; 343(6172):772-776.
|
[3] |
Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, et al.Long-term ecosystem response to the Exxon Valdez oil spill.Science 2003; 302(5653):2082-2086.
|
[4] |
Sun AQ, Hou XA, Hu XG.Super-performance photothermal conversion of 3D macrostructure graphene-CuFeSe aerogel contributes to durable and fast clean-up of highly viscous crude oil in seawater.Nano Energy 2020; 70:104511.
|
[5] |
Ge J, Shi LA, Wang YC, Zhao HY, Yao HB, Zhu YB, et al.Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill.Nat Nanotechnol 2017; 12(5):434-440.
|
[6] |
Kuang YD, Chen CJ, Chen G, Pei Y, Pastel G, Jia C, et al.Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil.Adv Funct Mater 2019; 29(16):1900162.
|
[7] |
Ding SQ, Han XH, Zhu LJ, Hu HY, Fan LW, Wang SR.Cleanup of oils and organic solvents from contaminated water by biomass-based aerogel with adjustable compression elasticity.Water Res 2023; 232:119684.
|
[8] |
Wu SW, Jian RD, Tian SY, Zhou L, Luo TF, Xiong GP.Simultaneous solar-driven seawater desalination and continuous oil recovery.Nano Energy 2023; 107:108160.
|
[9] |
Gao MM, Peh CK, Phan HT, Zhu LL, Ho GW.Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation.Adv Energy Mater 2018; 8(25):1800711.
|
[10] |
Ye MM, Jia J, Wu ZJ, Qian CX, Chen R, O PG’Brien, et al.Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation.Adv Energy Mater 2017; 7(4):1601811.
|
[11] |
Huang J, He YR, Chen MJ, Wang XZ.Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber.Appl Energy 2019; 236:244-252.
|
[12] |
Wang YC, Wang CZ, Song XJ, Megarajan SK, Jiang HQ.A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation.J Mater Chem A Mater Energy Sustain 2018; 6(3):963-971.
|
[13] |
Miao J, Lv FY, Gulfam R, Zhao WP.Synergistic effect of superhydrophilic skeleton decorated with hierarchical micro/nanostructures and graphene oxide on solar evaporation.Appl Energy 2023; 350:121779.
|
[14] |
Peng B, Yao Z, Wang X, Crombeen M, Sweeney DG, Tam KC.Cellulose-based materials in wastewater treatment of petroleum industry.Green Energy Environ 2020; 5(1):37-49.
|
[15] |
Lee J, Kim K, Park SH, Yoon GY, Kim J, Lee SJ.Macroporous photothermal bilayer evaporator for highly efficient and self-cleaning solar desalination.Nano Energy 2020; 77:105130.
|
[16] |
Jin HC, Lin GP, Bai LZ, Zeiny A, Wen DS.Steam generation in a nanoparticle-based solar receiver.Nano Energy 2016; 28:397-406.
|
[17] |
Ni G, Miljkovic N, Ghasemi H, Huang XP, Boriskina SV, Lin CT, et al.Volumetric solar heating of nanofluids for direct vapor generation.Nano Energy 2015; 17:290-301.
|
[18] |
Bi HC, Yin ZY, Cao XH, Xie X, Tan CL, Huang X, et al.Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents.Adv Mater 2013; 25(41):5916-5921.
|
[19] |
Xu X, Dong FH, Yang XX, Liu H, Guo LZ, Qian YH, et al.Preparation and characterization of cellulose grafted with epoxidized soybean oil aerogels for oil-absorbing materials.J Agric Food Chem 2019; 67(2):637-643.
|
[20] |
Yue XJ, Zhang T, Yang DY, Qiu FX, Li ZD.Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation.J Clean Prod 2018; 199:411-419.
|
[21] |
Li ZX, Lei SJ, Xi JC, Ye DL, Hu WZ, Song L, et al.Bio-based multifunctional carbon aerogels from sugarcane residue for organic solvents adsorption and solar-thermal-driven oil removal.Chem Eng J 2021; 426:129580.
|
[22] |
Edeh IG, Masek O, Fusseis F.4D structural changes and pore network model of biomass during pyrolysis.Sci Rep 2023; 13(1):22863.
|
[23] |
Hyväluoma J, Hannula M, Arstila K, Wang HL, Kulju S, Rasa K.Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar.J Anal Appl Pyrolysis 2018; 134:446-453.
|
[24] |
Shaaban A, Se SM, Dimin MF, Juoi JM, Mohd MH Husin, Mitan NMM.Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis.J Anal Appl Pyrolysis 2014; 107:31-39.
|
[25] |
Congsomjit D, Areeprasert C.Hydrochar-derived activated carbon from sugar cane bagasse employing hydrothermal carbonization and steam activation for syrup decolorization.Biomass Convers Biorefin 2021; 11(6):2569-2584.
|
[26] |
Coasne B.Multiscale adsorption and transport in hierarchical porous materials.New J Chem 2016; 40(5):4078-4094.
|
[27] |
Wang ZD, Xiao CM, Wu ZJ, Wang YT, Du X, Kong W, et al.A novel 3D porous modified material with cage-like structure: fabrication and its demulsification effect for efficient oil/water separation.J Mater Chem A Mater Energy Sustain 2017; 5(12):5895-5904.
|
[28] |
Sutar RS, Wu XN, Latthe SS, Shi BR, Xing RM, Liu SH.Efficient separation of oil–water emulsions: competent design of superwetting materials for practical applications.J Environ Chem Eng 2023; 11(6):111299.
|
[29] |
Yu TL, Halouane F, Mathias D, Barras A, Wang ZW, Lv AQ, et al.Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification.Chem Eng J 2020; 384:123339.
|
[30] |
Li LX, Li BC, Sun HX, Zhang JP.Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation.J Mater Chem A Mater Energy Sustain 2017; 5(28):14858-14864.
|
[31] |
Chen ZB, Zhan B, Li SY, Wei DS, Zhou WT, Liu Y.Facile fabrication of corn stover-based aerogel for oil/water separation.Separ Purif Tech 2022; 298:121642.
|
[32] |
Tian JS, Zhang T, Talifu D, Abulizi A, Ji YJ.Porous carbon materials derived from waste cotton stalk with ultra-high surface area for high performance supercapacitors.Mater Res Bull 2021; 143:111457.
|
[33] |
Wang CL, Ma D, Bao XH.Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation.J Phys Chem C 2008; 112(45):17596-17602.
|
[34] |
Zhao CX, Huang HR, Li ZY, Li JX, Li YT, Xiang D, et al.3D superhydrophobic/superoleophilic sponge with hierarchical porous structure and robust stability for high-efficiency and continuous separation of oily wastewater.Separ Purif Tech 2022; 299:121820.
|
[35] |
Shi CC, Wang TQ, Roy S, Chopra SS, Chen GX, Shang J, et al.From waste to resource: surface-engineered spent coffee grounds as a sustainable adsorbent for oil–water separation.Acs Est Eng 2023; 3(9):1297-1307.
|
[36] |
Yang JB, Wang HC, Tao ZA, Liu XP, Wang ZW, Yue RR, et al.3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism.Chem Eng J 2019; 359:149-158.
|
[37] |
Shi L, Shi Y, Zhuo SF, Zhang CL, Aldrees Y, Aleid S, et al.Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation.Nano Energy 2019; 60:222-230.
|
[38] |
Li JT, Lin FW, Yu HD, Tong X, Cheng ZJ, Yan BB, et al.Biochar-assisted catalytic pyrolysis of oily sludge to attain harmless disposal and residue utilization for soil reclamation.Environ Sci Technol 2023; 57(17):7063-7073.
|
[39] |
Chen W, Fang Y, Li KX, Chen ZQ, Xia MW, Gong M, et al.Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products.Appl Energy 2020; 260:114242.
|
[40] |
Ren SJ, Lei HW, Wang L, Bu Q, Chen SL, Wu J.Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts.Rsc Adv 2014; 4(21):10731-10737.
|
[41] |
Lin FW, Yu HD, Li JT, Zygourakis K, Li RD, Cheng ZJ, et al.Investigation on the interaction between oil compositions and soil minerals with the targets of resource recovery and harmless disposal of oily sludges by pyrolysis.Acs Est Eng 2023; 3(5):734-744.
|
[42] |
Li JT, Zheng F, Li QS, Farooq MZ, Lin FW, Yuan DK, et al.Effects of inherent minerals on oily sludge pyrolysis: kinetics, products, and secondary pollutants.Chem Eng J 2022; 431:133218.
|