[1] |
Luderer G, Vrontisi Z, Bertram C, Edelenbosch OY, Pietzcker RC, Rogelj J, et al.Residual fossil CO2 emissions in 1.5–2 °C pathways.Nat Clim Chang 2018; 8(7):626-633.
|
[2] |
Climate change 2021: the physical science basis. Contribution of working group I to the Sixth Assessment Report of the IPCC. Report. Cambridge: Cambridge University Press; 2021.
|
[3] |
Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, et al.Natural climate solutions.Proc Natl Acad Sci USA 2017; 114(44):11645-11650.
|
[4] |
Liu Y, Hu T, Rui Z, Zhang Z, Du K, Yang T, et al.An integrated framework for geothermal energy storage with CO2 sequestration and utilization.Engineering 2023; 30:121-130.
|
[5] |
He Y, Liu Y, Li J, Fan P, Liu X, Chai R, et al.Experimental study on the effect of CO2 dynamic sequestration on sandstone pore structure and physical properties.Fuel 2024; 375:132622.
|
[6] |
Cui G, Ren S, Rui Z, Ezekiel J, Zhang L, Wang H.The influence of complicated fluid–rock interactions on the geothermal exploitation in the CO2 plume geothermal system.Appl Energy 2018; 227:49-63.
|
[7] |
Luhmann AJ, Kong XZ, Tutolo BM, Ding K, Saar MO, Seyfried WE Jr.Permeability reduction produced by grain reorganization and accumulation of exsolved CO2 during geologic carbon sequestration: a new CO2 trapping mechanism.Environ Sci Technol 2013; 47(1):242-251.
|
[8] |
Ma J, Querci L, Hattendorf B, Saar MO, Kong XZ.Toward a spatiotemporal understanding of dolomite dissolution in sandstone by CO2-enriched brine circulation.Environ Sci Technol 2019; 53(21):12458-12466.
|
[9] |
Blunt MJ.Multiphase flow in permeable media: a pore-scale perspective.Report. Cambridge: CambridgeUniversity Press; 2017.
|
[10] |
Shiraki R, Dunn TL.Experimental study on water–rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA.Appl Geochem 2000; 15(3):265-279.
|
[11] |
Wang W, Yan Z, Chen D, He Y, Liang Z, Li Y, et al.The mechanism of mineral dissolution and its impact on pore evolution of CO2 flooding in tight sandstone: a case study from the Chang 7 member of the Triassic Yanchang Formation in the Ordos Basin.China. Geoenergy Sci Eng 2024; 235:212715.
|
[12] |
Tang Y, Lv C, Wang R, Cui M.Mineral dissolution and mobilization during CO2 injection into the water-flooded layer of the Pucheng Oilfield.China. J Nat Gas Sci Eng 2016; 33:1364-1373.
|
[13] |
Othman F, Yu M, Kamali F, Hussain F.Fines migration during supercritical CO2 injection in sandstone.J Nat Gas Sci Eng 2018; 56:344-357.
|
[14] |
De GD Silva, Ranjith P, Perera M, Dai Z, Yang S.An experimental evaluation of unique CO2 flow behaviour in loosely held fine particles rich sandstone under deep reservoir conditions and influencing factors.Energy 2017; 119:121-137.
|
[15] |
Ochi J, Vernoux JF.Permeability decrease in sandstone reservoirs by fluid injection: hydrodynamic and chemical effects.J Hydrol 1998; 208(3–4):237-248.
|
[16] |
Dávila G, Dalton L, Crandall DM, Garing C, Werth CJ, Druhan JL.Reactive alteration of a Mt. Simon Sandstone due to CO2–rich brine displacement.Geochim Cosmochim Acta 2020; 271:227-247.
|
[17] |
Lamy-Chappuis B, Angus D, Fisher Q, Grattoni C, Yardley BWD.Rapid porosity and permeability changes of calcareous sandstone due to CO2–enriched brine injection.Geophys Res Lett 2014; 41(2):399-406.
|
[18] |
Zou Y, Li S, Ma X, Zhang S, Li N, Chen M.Effects of CO2–brine–rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs.J Nat Gas Sci Eng 2018; 49:157-168.
|
[19] |
Tang Y, Hu S, He Y, Wang Y, Wan X, Cui S, et al.Experiment on CO2–brine–rock interaction during CO2 injection and storage in gas reservoirs with aquifer.Chem Eng J 2021; 413:127567.
|
[20] |
Sun Y, Dai C, Yu Z, Xin Y.The carbonic acid–rock reaction in feldspar/dolomite-rich tightsand and its impact on CO2–water relative permeability during geological carbon storage.Chem Geol 2021; 584:120527.
|
[21] |
Gholami R, Raza A.CO2 sequestration in sandstone reservoirs: how does reactive flow alter trapping mechanisms?.Fuel 2022; 324:124781.
|
[22] |
Sayegh SG, Krause FF, Girard M, DeBree C.Rock/fluid interactions of carbonated brines in a sandstone reservoir: Pembina Cardium, Alberta.Canada. SPE Form Eval 1990; 5(4):399-405.
|
[23] |
Al-Yaseri A, Zhang Y, Ghasemiziarani M, Sarmadivaleh M, Lebedev M, Roshan H, et al.Permeability evolution in sandstone due to CO2 injection.Energy Fuels 2017; 31(11):12390-12398.
|
[24] |
Ge J, Zhang X, Othman F, Wang Y, Roshan H, Le-Hussain F.Effect of fines migration and mineral reactions on CO2–water drainage relative permeability.Int J Greenh Gas Control 2020; 103:103184.
|
[25] |
Kou Z, Wang H, Alvarado V, Nye C, Bagdonas DA, McLaughlin JF, et al.Effects of carbonic acid–rock interactions on CO2/brine multiphase flow properties in the upper minnelusa sandstones.SPE J 2023; 28(02):754-767.
|
[26] |
Liu L, Suto Y, Bignall G, Yamasaki N, Hashida T.CO2 injection to granite and sandstone in experimental rock/hot water systems.Energy Convers Manage 2003; 44(9):1399-1410.
|
[27] |
Kaszuba JP, Janecky DR, Snow MG.Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: implications for geologic sequestration of carbon.Appl Geochem 2003; 18(7):1065-1080.
|
[28] |
Ilgen AG, Aman M, Espinoza DN, Rodriguez MA, Griego J, Dewers TA, et al.Shale–brine–CO2 interactions and the long-term stability of carbonate-rich shale caprock.Int J Greenh Gas Control 2018; 78:244-253.
|
[29] |
Fu Q, Lu P, Konishi H, Dilmore R, Xu H, Seyfried W Jr, et al.Coupled alkali-feldspar dissolution and secondary mineral precipitation in batch systems: 1. New experiments at 200 °C and 300 bars.Chem Geol 2009; 258(3–4):125-135.
|
[30] |
Lu P, Fu Q, Seyfried WE Jr, Hedges SW, Soong Y, Jones K, et al.Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems 2: New experiments with supercritical CO2 and implications for carbon sequestration.Appl Geochem 2013; 30:75-90.
|
[31] |
Dawson G, Pearce J, Biddle D, Golding S.Experimental mineral dissolution in Berea Sandstone reacted with CO2 or SO2–CO2 in NaCl brine under CO2 sequestration conditions.Chem Geol 2015; 399:87-97.
|
[32] |
Pearce JK, Dawson GKW, Blach TP, Bahadur J, Melnichenko YB, Golding SD.Impure CO2 reaction of feldspar, clay, and organic matter rich caprocks: decreases in the fraction of accessible mesopores measured by SANS.Int J Coal Geol 2018; 185:79-90.
|
[33] |
Pearce J, Dawson G, Golab A, Knuefing L, Sommacal S, Rudolph V, et al.A combined geochemical and μCT study on the CO2 reactivity of Surat Basin reservoir and cap-rock cores: porosity changes, mineral dissolution and fines migration.Int J Greenh Gas Control 2019; 80:10-24.
|
[34] |
Carroll SA, McNab WW, Dai Z, Torres SC.Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.Environ Sci Technol 2013; 47(1):252-261.
|
[35] |
Fuchs SJ, Espinoza DN, Lopano CL, Akono AT, Werth CJ.Geochemical and geomechanical alteration of siliciclastic reservoir rock by supercritical CO2–saturated brine formed during geological carbon sequestration.Int J Greenh Gas Control 2019; 88:251-260.
|
[36] |
Lin Q, Bijeljic B, Raeini AQ, Rieke H, Blunt MJ.Drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone.Geophys Res Lett 2021; 48:e2021GL093604.
|
[37] |
Fenghour A, Wakeham WA, Vesovic V.The viscosity of carbon dioxide.J Phys Chem Ref Data 1998; 27(1):31-44.
|
[38] |
Abdulagatov IM, Zeinalova AB, Azizov ND.Viscosity of aqueous electrolyte solutions at high temperatures and high pressures. Viscosity B-coefficient. Sodium iodide.J Chem Eng Data 2006; 51(5):1645-1659.
|
[39] |
Chalbaud C, Robin M, Lombard JM, Martin F, Egermann P, Bertin H.Interfacial tension measurements and wettability evaluation for geological CO2 storage.Adv Water Resour 2009; 32(1):98-109.
|
[40] |
Gao Y, Raeini AQ, Selem AM, Bondino I, Blunt MJ, Bijeljic B.Pore-scale imaging with measurement of relative permeability and capillary pressure on the same reservoir sandstone sample under water-wet and mixed-wet conditions.Adv Water Resour 2020; 146:103786.
|
[41] |
Alhammadi AM, Gao Y, Akai T, Blunt MJ, Bijeljic B.Pore-scale X-ray imaging with measurement of relative permeability, capillary pressure and oil recovery in a mixed-wet micro-porous carbonate reservoir rock.Fuel 2020; 268:117018.
|
[42] |
Krevor SCM, Pini R, Zuo L, Benson SM.Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions.Water Resour Res 2012; 48(2):W02532.
|
[43] |
Gao Y, Lin Q, Bijeljic B, Blunt MJ.Pore-scale dynamics and the multiphase Darcy law.Phys Rev Fluids 2020; 5(1):013801.
|
[44] |
Raeini AQ, Bijeljic B, Blunt MJ.Generalized network modeling: network extraction as a coarse-scale discretization of the void space of porous media.Phys Rev E 2017; 96(1):013312.
|
[45] |
AlRatrout A, Blunt MJ, Bijeljic B.Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness.Proc Natl Acad Sci USA 2018; 115(36):8901-8906.
|
[46] |
Foroughi S, Bijeljic B, Lin Q, Raeini AQ, Blunt MJ.Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks.Phys Rev E 2020; 102(2):023302.
|
[47] |
Pettijohn FJ, Potter PE, Siever R.Sand and Sandstone.Springer Science &Business Media, Berlin (2012)
|
[48] |
Chai R, Liu Y, Xue L, Rui Z, Zhao R, Wang J.Formation damage of sandstone geothermal reservoirs: during decreased salinity water injection.Appl Energy 2022; 322:119465.
|
[49] |
Jeong GS, Lee J, Ki S, Huh DG, Park CH.Effects of viscosity ratio, interfacial tension and flow rate on hysteric relative permeability of CO2/brine systems.Energy 2017; 133:62-69.
|
[50] |
Akbarabadi M, Piri M.Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: an experimental study at reservoir conditions.Adv Water Resour 2013; 52:190-206.
|
[51] |
Ruprecht C, Pini R, Falta R, Benson S, Murdoch L.Hysteretic trapping and relative permeability of CO2 in sandstone at reservoir conditions.Int J Greenh Gas Control 2014; 27:15-27.
|
[52] |
Abdoulghafour H, Sarmadivaleh M, Hauge LP, Fern Mø, Iglauer S.Capillary pressure characteristics of CO2–brine–sandstone systems.Int J Greenh Gas Control 2020; 94:102876.
|
[53] |
Meng S, Liu C, Liu Y, Rui Z, Liu H, Jin X, et al.CO2 utilization and sequestration in organic-rich shale from the nanoscale perspective.Appl Energy 2024; 361:122907.
|
[54] |
Alhosani A, Lin Q, Scanziani A, Andrews E, Zhang K, Bijeljic B, et al.Pore-scale characterization of carbon dioxide storage at immiscible and near-miscible conditions in altered-wettability reservoir rocks.Int J Greenh Gas Control 2021; 105:103232.
|
[55] |
Blunt MJ, Lin Q, Akai T, Bijeljic B.A thermodynamically consistent characterization of wettability in porous media using high-resolution imaging.J Colloid Interface Sci 2019; 552:59-65.
|
[56] |
Punase A, Prakoso A, Hascakir B.Effect of clay minerals on asphaltene deposition in reservoir rock: insights from experimental investigations.Fuel 2023; 351:128835.
|
[57] |
Wang X, Yang H, Huang Y, Liang Q, Liu J, Ye D.Evolution of CO2 storage mechanisms in low-permeability tight sandstone reservoirs.Engineering. In press.
|