[1] |
Magliano DJ, Boyko EJ; IDFDiabetes Atlas 10thEdition Scientific Committee.IDF Diabetes Atlas.10th ed. Brussels: InternationalDiabetes Federation; 2021.
|
[2] |
Armstrong DG, Boulton AJM, Bus SA.Diabetic foot ulcers and their recurrence.N Engl J Med 2017; 376(24):2367-2375.
|
[3] |
Edmonds M, Manu C, Vas P.The current burden of diabetic foot disease.J Clin Orthop Trauma 2021; 17:88-93.
|
[4] |
Nguyen HM, Ngoc TT Le, Nguyen AT, Thien HN Le, Pham TT.Biomedical materials for wound dressing: recent advances and applications.RSC Advances 2023; 13(8):5509-5528.
|
[5] |
Zhang J, Luo Q, Hu Q, Zhang T, Shi J, Kong L, et al.An injectable bioactive dressing based on platelet-rich plasma and nanoclay: sustained release of deferoxamine to accelerate chronic wound healing.Acta Pharm Sin B 2023; 13(10):4318-4336.
|
[6] |
Li J, Chen Q, Wang J, Pan X, Zhang J.Insight into bioactive hydrogels for wound healing and drug delivery systems.Curr Med Chem 2021; 28(42):8692-8710.
|
[7] |
Zhou W, Duan Z, Zhao J, Fu R, Zhu C, Fan D.Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing.Bioact Mater 2022; 17:1-17.
|
[8] |
Wu Y, Wang Y, Long L, Hu C, Kong Q, Wang Y.A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing.J Control Release 2022; 341:147-165.
|
[9] |
Feng Y, Xiao K, Chen J, Lin J, He Y, He X, et al.Immune-microenvironment modulatory polyurethane-hyaluronic acid hybrid hydrogel scaffolds for diabetic wound treatment.Carbohydr Polym 2023; 320:121238.
|
[10] |
Mndlovu H, du LC Toit, Kumar P, Choonara YE.Tannic acid-loaded chitosan-RGD-alginate scaffolds for wound healing and skin regeneration.Biomed Mater 2023; 18(4):045009.
|
[11] |
Mariani F, Serafini M, Gualandi I, Arcangeli D, Decataldo F, Possanzini L, et al.Advanced wound dressing for real-time pH monitoring.ACS Sens 2021; 6(6):2366-2377.
|
[12] |
Mirani B, Hadisi Z, Pagan E, Dabiri SMH, van A Rijt, Almutairi L, et al.Smart dual-sensor wound dressing for monitoring cutaneous wounds.Adv Healthc Mater 2023; 12(18):e2203233.
|
[13] |
Tan W, Long T, Wan Y, Li B, Xu Z, Zhao L, et al.Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing.Carbohydr Polym 2023; 312:120824.
|
[14] |
Liang Y, Li M, Yang Y, Qiao L, Xu H, Guo B.pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing.ACS Nano 2022; 16(2):3194-3207.
|
[15] |
Liu W, Gao R, Yang C, Feng Z, Ou-Yang W, Pan X, et al.ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing.Sci Adv 2022; 8(27):eabn7006.
|
[16] |
Matoori S, Veves A, Mooney DJ.Advanced bandages for diabetic wound healing.Sci Transl Med 2021; 13(585):eabe4839.
|
[17] |
Lindholm C, Searle R.Wound management for the 21st century: combining effectiveness and efficiency.Int Wound J 2016; 13(S2):5-15.
|
[18] |
Lu H, Yuan L, Yu X, Wu C, He D, Deng J.Recent advances of on-demand dissolution of hydrogel dressings.Burns Trauma 2018; 6:35.
|
[19] |
Zhao Y, Li Z, Li Q, Yang L, Liu H, Yan R, et al.Transparent conductive supramolecular hydrogels with stimuli-responsive properties for on-demand dissolvable diabetic foot wound dressings.Macromol Rapid Commun 2020; 41(24):e2000441.
|
[20] |
Farahani M, Shafiee A.Wound healing: from passive to smart dressings.Adv Healthc Mater 2021; 10(16):e2100477.
|
[21] |
Shi XQ, Chen G, Tan JQ, Li Z, Chen SM, He JH, et al.Total alkaloid fraction of Leonurus japonicus Houtt. Promotes angiogenesis and wound healing through SRC/MEK/ERK signaling pathway.J Ethnopharmacol 2022; 295:115396.
|
[22] |
The Lancet.Pasteur’s legacy in 21st century medicine.
|
[23] |
Birgand G, Ahmad R, Bulabula ANH, Singh S, Bearman G, Sánchez EC, et al.Innovation for infection prevention and control-revisiting Pasteur’s vision.Lancet 2022; 400(10369):2250-2260.
|
[24] |
Heather J, Bisson M.Constriction “Band-Aid” syndrome causing digital ischaemia.N Z Med J 2011; 124:107-110.
|
[25] |
Winter GD.Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig.Nature 1962; 193(4812):293-294.
|
[26] |
Williams C.Opsite flexigrid. Br J Nurs 1995;4:411–2,4.
|
[27] |
Foster AV, Eaton C, McConville DO, Edmonds ME.Application of OpSite film: a new and effective treatment of painful diabetic neuropathy.Diabet Med 1994; 11(8):768-772.
|
[28] |
Fang H, Xu J, Ma H, Liu J, Xing E, Cheng YY, et al.Functional materials of 3D bioprinting for wound dressings and skin tissue engineering applications: a review.Int J Bioprint 2023; 9(5):757.
|
[29] |
Wang Q, Zhang S, Jiang J, Chen S, Ramakrishna S, Zhao W, et al.Electrospun radially oriented berberine-PHBV nanofiber dressing patches for accelerating diabetic wound healing.Regen Biomater 2024; 11:rbae063.
|
[30] |
Li Y, Meng Q, Chen S, Ling P, Kuss MA, Duan B, et al.Advances, challenges, and prospects for surgical suture materials.Acta Biomater 2023; 168:78-112.
|
[31] |
Li R, Liu K, Huang X, Li D, Ding J, Liu B, et al.Bioactive materials promote wound healing through modulation of cell behaviors.Adv Sci 2022; 9:2105152.
|
[32] |
Peña OA, Martin P.Cellular and molecular mechanisms of skin wound healing.Nat Rev Mol Cell Biol 2024; 25(8):599-616.
|
[33] |
Wallace HA, Basehore BM, Zito PM.Wound healing phases. StatPearls Publishing, Treasure Island, FL, USA (2024)
|
[34] |
El MG Baassiri, Dosh L, Haidar H, Gerges A, Baassiri S, Leone A, et al.Nerve growth factor and burn wound healing: update of molecular interactions with skin cells.Burns 2023; 49:989-1002.
|
[35] |
Wang Y, Gallant RC, Ni H.Extracellular matrix proteins in the regulation of thrombus formation.Curr Opin Hematol 2016; 23(3):280-287.
|
[36] |
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC.Wound healing: a cellular perspective.Physiol Rev 2019; 99(1):665-706.
|
[37] |
Tykocinski ML, Xiong N, Morrow DM.Platelet immunoregulatory factors.Stem Cells 1996; 14(S1):240-245.
|
[38] |
Martin P, Leibovich SJ.Inflammatory cells during wound repair: the good, the bad and the ugly.Trends Cell Biol 2005; 15(11):599-607.
|
[39] |
Niethammer P.The early wound signals.Curr Opin Genet Dev 2016; 40:17-22.
|
[40] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al.Macrophage plasticity, polarization, and function in health and disease.J Cell Physiol 2018; 233(9):6425-6440.
|
[41] |
Tan MWY, Tan WR, Kong ZQ, Toh JH, Wee WKJ, Teo EML, et al.High glucose restraint of acetylcholine-induced keratinocyte epithelial–mesenchymal transition is mitigated by p38 inhibition.J Invest Dermatol 2021; 141(6):1438-1449.e9.
|
[42] |
Holt JR, Zeng WZ, Evans EL, Woo SH, Ma S, Abuwarda H, et al.Spatiotemporal dynamics of PIEZO1 localization controls keratinocyte migration during wound healing.eLife 2021; 10:e65415.
|
[43] |
Qiang L, Yang S, Cui YH, He YY.Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing.Autophagy 2021; 17(9):2128-2143.
|
[44] |
Wilkinson HN, Hardman MJ.Wound healing: cellular mechanisms and pathological outcomes.Open Biol 2020; 10(9):200223.
|
[45] |
Velnar T, Gradisnik L.Tissue augmentation in wound healing: the role of endothelial and epithelial cells.Med Arh 2018; 72(6):444-448.
|
[46] |
Khalaf AA, Hassanen EI, Zaki AR, Tohamy AF, Ibrahim MA.Histopathological, immunohistochemical, and molecular studies for determination of wound age and vitality in rats.Int Wound J 2019; 16(6):1416-1425.
|
[47] |
McAndrews KM, Miyake T, Ehsanipour EA, Kelly PJ, Becker LM, McGrail DJ, et al.Dermal αSMA+ myofibroblasts orchestrate skin wound repair via β1 integrin and independent of type I collagen production.EMBO J 2022; 41(7):e109470.
|
[48] |
Singh D, Rai V, Agrawal DK.Regulation of collagen I and collagen III in tissue injury and regeneration.Cardiol Cardiovasc Med 2023; 7(01):5-16.
|
[49] |
Huang Y, Kyriakides TR.The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol Plus, 6–7 (2020), Article 100037
|
[50] |
Frangogiannis N.Transforming growth factor-β in tissue fibrosis.J Exp Med 2020; 217(3):e20190103.
|
[51] |
Putra A, Alif I, Hamra N, Santosa O, Kustiyah AR, Muhar AM, et al.MSC-released TGF-β regulate α-SMA expression of myofibroblast during wound healing.J Stem Cells Regen Med 2020; 16(2):73-79.
|
[52] |
Castaño O, P Sérez-Amodio, Navarro-Requena C, Mateos-Timoneda M, Engel E.Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms.Adv Drug Deliv Rev 2018; 129:95-117.
|
[53] |
Rahadian A, Fukuda D, Salim HM, Yagi S, Kusunose K, Yamada H, et al.Thrombin inhibition by dabigatran attenuates endothelial dysfunction in diabetic mice.Vascul Pharmacol 2020; 124:106632.
|
[54] |
Hotamisligil GS.Inflammation and metabolic disorders.Nature 2006; 444(7121):860-867.
|
[55] |
Kolluru GK, Bir SC, Kevil CG.Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing.Int J Vasc Med 2012; 2012:918267.
|
[56] |
Huang SM, Wu CS, Chiu MH, Wu CH, Chang YT, Chen GS, et al.High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-α: an important mechanism to delay the diabetic wound healing.J Dermatol Sci 2019; 96(3):159-167.
|
[57] |
Sawaya AP, Stone RC, Brooks SR, Pastar I, Jozic I, Hasneen K, et al.Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing.Nat Commun 2020; 11(1):4678.
|
[58] |
Yaseen H, Khamaisi M.Skin well-being in diabetes: role of macrophages.Cell Immunol 2020; 356:104154.
|
[59] |
Yang Y, Zhou Y, Wang Y, Wei X, Wang T, Ma A.Exendin-4 regulates endoplasmic reticulum stress to protect endothelial progenitor cells from high-glucose damage.Mol Cell Probes 2020; 51:101527.
|
[60] |
Qin PY, Xu YJ, Zuo XD, Duan JH, Qiu B, Li XF, et al.Effect and mechanisms of Polygonatum kingianum (polygonati rhizome) on wound healing in diabetic rats.J Ethnopharmacol 2022; 298:115612.
|
[61] |
Rademakers T, Horvath JM, van CA Blitterswijk, LaPointe VLS.Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization.J Tissue Eng Regen Med 2019; 13(10):1815-1829.
|
[62] |
Greenhalgh DG.Wound healing and diabetes mellitus.Clin Plast Surg 2003; 30(1):37-45.
|
[63] |
Burgess JL, Wyant WA, Abdo B Abujamra, Kirsner RS, Jozic I.Diabetic wound-healing science.Medicina 2021; 57(10):1072.
|
[64] |
Ko KI, Sculean A, Graves DT.Diabetic wound healing in soft and hard oral tissues.Transl Res 2021; 236:72-86.
|
[65] |
Kim KP, Williams CE, Lemmon CA.Cell–matrix interactions in renal fibrosis.Kidney Dial 2022; 2(4):607-624.
|
[66] |
Lima AL, Illing T, Schliemann S, Elsner P.Cutaneous manifestations of diabetes mellitus: a review.Am J Clin Dermatol 2017; 18(4):541-553.
|
[67] |
Fournier C, Singbo N, Morissette N, Thibeault MM.Outcomes of diabetic foot ulcers in a tertiary referral interdisciplinary clinic: a retrospective Canadian study.Can J Diabetes 2021; 45(3):255-260.
|
[68] |
Cepas V, Collino M, Mayo JC, Sainz RM.Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases.Antioxidants 2020; 9(2):142.
|
[69] |
Ruan Y, Jiang S, Musayeva A, Gericke A.Oxidative stress and vascular dysfunction in the retina: therapeutic strategies.Antioxidants 2020; 9(8):761.
|
[70] |
Ritschel WA.Influence of formulating factors on drug safety of timed-release nitroglycerin tablets.J Pharm Sci 1971; 60(11):1683-1685.
|
[71] |
Dai J, Chen H, Chai Y.Advanced glycation end products (AGEs) induce apoptosis of fibroblasts by activation of NLRP3 inflammasome via reactive oxygen species (ROS) signaling pathway.Med Sci Monit 2019; 25:7499-7508.
|
[72] |
Kang HJ, Kumar S, Dash BC, Hsia HC, Yarmush ML, Berthiaume F.Multifunctional elastin-like polypeptide fusion protein coacervates inhibit receptor-mediated proinflammatory signals and promote angiogenesis in mouse diabetic wounds.Adv Wound Care 2023; 12(5):241-255.
|
[73] |
Zhu P, Yang C, Chen LH, Ren M, Lao GJ, Yan L.Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA.Arch Dermatol Res 2011; 303(5):339-350.
|
[74] |
Zhao Y, Wang X, Yang S, Song X, Sun N, Chen C, et al.Kanglexin accelerates diabetic wound healing by promoting angiogenesis via FGFR1/ERK signaling.Biomed Pharmacother 2020; 132:110933.
|
[75] |
Kulkarni SA, Deshpande SK, Rastogi A.Novel topical esmolol hydrochloride improves wound healing in diabetes by inhibiting aldose reductase, generation of advanced glycation end products, and facilitating the migration of fibroblasts.Front Endocrinol 2022; 13:926129.
|
[76] |
Kamml J, Acevedo C, Kammer DS.Advanced-glycation endproducts: how cross-linking properties affect the collagen fibril behavior.J Mech Behav Biomed Mater 2023; 148:106198.
|
[77] |
Kamml J, Ke CY, Acevedo C, Kammer DS.The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils.J Mech Behav Biomed Mater 2023; 143:105870.
|
[78] |
Fan W, Adebowale K, Váncza L, Li Y, Rabbi MF, Kunimoto K, et al.Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver.Nature 2024; 626(7999):635-642.
|
[79] |
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al.Diabetic microvascular disease: an endocrine society scientific statement.J Clin Endocrinol Metab 2017; 102(12):4343-4410.
|
[80] |
Chilelli NC, Burlina S, Lapolla A.AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a “glycoxidation-centric” point of view.Nutr Metab Cardiovasc Dis 2013; 23(10):913-919.
|
[81] |
Mayrovitz HN, Wong S, Mancuso C.Venous, arterial, and neuropathic leg ulcers with emphasis on the geriatric population.Cureus 2023; 15:e38123.
|
[82] |
Yi X, Song Y, Xu J, Wang L, Liu L, Huang D, et al.NLRP10 promotes AGEs-induced NLRP1 and NLRP3 inflammasome activation via ROS/MAPK/NF-κB signaling in human periodontal ligament cells.Odontology 2024; 112(1):100-111.
|
[83] |
Xia S, Weng T, Jin R, Yang M, Yu M, Zhang W, et al.Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds.Burns Trauma 2022; 10:tkac001.
|
[84] |
Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, et al.The role of oxidative stress and antioxidants in diabetic wound healing.Oxid Med Cell Longev 2021; 2021(1):8852759.
|
[85] |
Zhang B, Yang Y, Yi J, Zhao Z, Ye R.Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis.J Periodontal Res 2021; 56(5):991-1005.
|
[86] |
Ma J, Song R, Liu C, Cao G, Zhang G, Wu Z, et al.Single-cell RNA-Seq analysis of diabetic wound macrophages in STZ-induced mice.J Cell Commun Signal 2023; 17(1):103-120.
|
[87] |
Zhang K, Shi Z, Zhang M, Dong X, Zheng L, Li G, et al.Silencing lncRNA Lfar1 alleviates the classical activation and pyoptosis of macrophage in hepatic fibrosis.Cell Death Dis 2020; 11(2):132.
|
[88] |
Zhang J, Liu X, Wan C, Liu Y, Wang Y, Meng C, et al.NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption.J Clin Periodontol 2020; 47(4):451-460.
|
[89] |
Han Y, Huang Y, Gao P, Yang Q, Jia L, Zheng Y, et al.Leptin aggravates periodontitis by promoting M1 polarization via NLRP3.J Dent Res 2022; 101(6):675-685.
|
[90] |
Thanganadar S Appapalam, Muniyan A, Vasanthi K Mohan, Panchamoorthy R.A study on isolation, characterization, and exploration of multiantibiotic-resistant bacteria in the wound site of diabetic foot ulcer patients.Int J Low Extrem Wounds 2021; 20(1):6-14.
|
[91] |
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR.A bittersweet response to infection in diabetes; targeting neutrophils to modify inflammation and improve host immunity.Front Immunol 2021; 12:678771.
|
[92] |
Alavi M, Nokhodchi A.Antimicrobial and wound treatment aspects of micro- and nanoformulations of carboxymethyl, dialdehyde, and TEMPO-oxidized derivatives of cellulose: recent advances.Macromol Biosci 2020; 20(4):e1900362.
|
[93] |
Deusenbery CB, Kalan L, Meisel JS, Gardner SE, Grice EA, Spiller KL.Human macrophage response to microbial supernatants from diabetic foot ulcers.Wound Repair Regen 2019; 27(6):598-608.
|
[94] |
Saeed K, Sendi P, Arnold WV, Bauer TW, Cora DCça-Huber, Chen AF, et al.Bacterial toxins in musculoskeletal infections.J Orthop Res 2021; 39(2):240-250.
|
[95] |
Diller RB, Tabor AJ.The role of the extracellular matrix (ECM) in wound healing: a review.Biomimetics 2022; 7(3):87.
|
[96] |
Kirketerp-M Køller, Bjarnsholt T, Jensen P.Staphylococcus aureus augments release of matrix metalloproteinase-8 from human polymorpho-nuclear leukocytes.Acta Derm Venereol 2020; 100(15):adv00232.
|
[97] |
Su CW, Lin CW, Yang WE, Yang SF.TIMP-3 as a therapeutic target for cancer.Ther Adv Med Oncol 2019; 11:1758835919864247.
|
[98] |
Xu W, Dielubanza E, Maisel A, Leung K, Mustoe T, Hong S, et al.Staphylococcus aureus impairs cutaneous wound healing by activating the expression of a gap junction protein, connexin-43 in keratinocytes.Cell Mol Life Sci 2021; 78(3):935-947.
|
[99] |
Aepfelbacher M, Essler M, Huber E, Sugai M, Weber PC.Bacterial toxins block endothelial wound repair. Evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells.Arterioscler Thromb Vasc Biol 1997; 17(9):1623-1629.
|
[100] |
Phalak P, Henson MA.Metabolic modelling of chronic wound microbiota predicts mutualistic interactions that drive community composition.J Appl Microbiol 2019; 127(5):1576-1593.
|
[101] |
Phalak P, Chen J, Carlson RP, Henson MA.Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species.BMC Syst Biol 2016; 10(1):90.
|
[102] |
Sun C, Zhou X, Liu C, Deng S, Song Y, Yang J, et al.An integrated therapeutic and preventive nanozyme-based microneedle for biofilm-infected diabetic wound healing.Adv Healthc Mater 2023; 12(30):e2301474.
|
[103] |
Srivastava P, Gomathinayagam S, Easwaran N, Sankar G, Padmavathi E, Shankar M, et al.Comparative data analysis of two multi-drug resistant homoserine lactone and rhamnolipid producing Pseudomonas aeruginosa from diabetic foot infected patient.Data Brief 2020; 32:106071.
|
[104] |
de GHJ Smet, Kroese LF, Menon AG, Jeekel J, van AWJ Pelt, Kleinrensink GJ, et al.Oxygen therapies and their effects on wound healing.Wound Repair Regen 2017; 25(4):591-608.
|
[105] |
Sen CK.Wound healing essentials: let there be oxygen.Wound Repair Regen 2009; 17(1):1-18.
|
[106] |
Zhu J, Kang J, Li X, Wang M, Shang M, Luo Y, et al.Chronic intermittent hypoxia vs chronic continuous hypoxia: effects on vascular endothelial function and myocardial contractility.Clin Hemorheol Microcirc 2020; 74(4):417-427.
|
[107] |
Morey M, O P’Gaora, Pandit A, H Célary.Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages.PLoS One 2019; 14(8):e0220577.
|
[108] |
Harris AL.Hypoxia—a key regulatory factor in tumour growth.Nat Rev Cancer 2002; 2(1):38-47.
|
[109] |
Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, McArdle A, et al.The role of hypoxia-inducible factor in wound healing.Adv Wound Care 2014; 3(5):390-399.
|
[110] |
Catrina SB, Zheng X.Hypoxia and hypoxia-inducible factors in diabetes and its complications.Diabetologia 2021; 64(4):709-716.
|
[111] |
Li G, Ko CN, Li D, Yang C, Wang W, Yang GJ, et al.A small molecule HIF-1α stabilizer that accelerates diabetic wound healing.Nat Commun 2021; 12(1):3363.
|
[112] |
Hayes PD, Alzuhir N, Curran G, Loftus IM.Topical oxygen therapy promotes the healing of chronic diabetic foot ulcers: a pilot study.J Wound Care 2017; 26(11):652-660.
|
[113] |
Sobecki M, Krzywinska E, Nagarajan S, Audig Aé, Hu Kỳnh, Zacharjasz J, et al.NK cells in hypoxic skin mediate a trade-off between wound healing and antibacterial defence.Nat Commun 2021; 12(1):4700.
|
[114] |
Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, et al.HIF-1α–PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity.Nat Commun 2016; 7(1):11635.
|
[115] |
Semadi NI.The role of VEGF and TNF-α on epithelialization of diabetic foot ulcers after hyperbaric oxygen therapy.Open Access Maced J Med Sci 2019; 7(19):3177-3183.
|
[116] |
Huang X, Liang P, Jiang B, Zhang P, Yu W, Duan M, et al.Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis.Life Sci 2020; 259:118246.
|
[117] |
Lalieu RC, Brouwer RJ, Ubbink DT, Hoencamp R, Bol R Raap, van RA Hulst.Hyperbaric oxygen therapy for nonischemic diabetic ulcers: a systematic review.Wound Repair Regen 2020; 28(2):266-275.
|
[118] |
Guan Y, Niu H, Liu Z, Dang Y, Shen J, Zayed M, et al.Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation.Sci Adv 2021; 7(35):eabj0153.
|
[119] |
Heyboer M 3rd, Sharma D, Santiago W, McCulloch N.Hyperbaric oxygen therapy: side effects defined and quantified.Adv Wound Care 2017; 6(6):210-224.
|
[120] |
Tran V, Smart D.Proliferative retinopathy during hyperbaric oxygen treatment.Diving Hyperb Med 2017; 47(3):203.
|
[121] |
Plafki C, Peters P, Almeling M, Welslau W, Busch R.Complications and side effects of hyperbaric oxygen therapy.Aviat Space Environ Med 2000; 71:119-124.
|
[122] |
Wilson DF, Matschinsky FM.Hyperbaric oxygen toxicity in brain: a case of hyperoxia induced hypoglycemic brain syndrome.Med Hypotheses 2019; 132:109375.
|
[123] |
Löndahl M, Katzman P, Nilsson A, Hammarlund C.Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes.Diabetes Care 2010; 33(5):998-1003.
|
[124] |
Bennett MH, Cooper JS.Hyperbaric oxygen therapy and associated cataracts. StatPearls Publishing, Treasure Island, FL, USA (2024)
|
[125] |
Fedorko L, Bowen JM, Jones W, Oreopoulos G, Goeree R, Hopkins RB, et al.Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial.Diabetes Care 2016; 39(3):392-399.
|
[126] |
Khalid M, Petroianu G, Adem A.Advanced glycation end products and diabetes mellitus: mechanisms and perspectives.Biomolecules 2022; 12(4):542.
|
[127] |
Caley MP, Martins VL, O EA’Toole.Metalloproteinases and wound healing.Adv Wound Care 2015; 4(4):225-234.
|
[128] |
Mo Y, Mo L, Zhang Y, Zhang Y, Yuan J, Zhang Q.High glucose enhances the activation of NLRP3 inflammasome by ambient fine particulate matter in alveolar macrophages.Part Fibre Toxicol 2023; 20(1):41.
|
[129] |
Liu X, Xing Y, Yuen M, Yuen T, Yuen H, Peng Q.Anti-aging effect and mechanism of proanthocyanidins extracted from sea buckthorn on hydrogen peroxide-induced aging human skin fibroblasts.Antioxidants 2022; 11(10):1900.
|
[130] |
Laronha H, Caldeira J.Structure and function of human matrix metalloproteinases.Cells 2020; 9(5):1076.
|
[131] |
Liu W, Yu M, Xie D, Wang L, Ye C, Zhu Q, et al.Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway.Stem Cell Res Ther 2020; 11(1):259.
|
[132] |
Wang L, Guo F, Min DH, Liao XC, Yu SQ, Long XX, et al.Analysis of differential gene expressions of inflammatory and repair-related factors in chronic refractory wounds in clinic.Chin J Burns 2019; 35:18-24.
|
[133] |
Rivas-Santiago B, Trujillo V, Montoya A, Gonzalez-Curiel I, Castañeda-Delgado J, Cardenas A, et al.Expression of antimicrobial peptides in diabetic foot ulcer.J Dermatol Sci 2012; 65(1):19-26.
|
[134] |
Blaak J, Staib P.The relation of pH and skin cleansing.Curr Probl Dermatol 2018; 54:132-142.
|
[135] |
Wallace LA, Gwynne L, Jenkins T.Challenges and opportunities of pH in chronic wounds.Ther Deliv 2019; 10(11):719-735.
|
[136] |
Gethin G.The significance of surface pH in chronic wounds.Wounds UK 2007; 3(3):52.
|
[137] |
Strohal R, Mittlböck M, Hämmerle G.The management of critically colonized and locally infected leg ulcers with an acid-oxidizing solution: a pilot study.Adv Skin Wound Care 2018; 31(4):163-171.
|
[138] |
Leveen HH, Falk G, Borek B, Diaz C, Lynfield Y, Wynkoop BJ, et al.Chemical acidification of wounds. An adjuvant to healing and the unfavorable action of alkalinity and ammonia.Ann Surg 1973; 178(6):745-753.
|
[139] |
Pan F, Giovannini G, Zhang S, Altenried S, Zuber F, Chen Q, et al.pH-responsive silica nanoparticles for the treatment of skin wound infections.Acta Biomater 2022; 145:172-184.
|
[140] |
Cui T, Yu J, Wang CF, Chen S, Li Q, Guo K, et al.Micro-gel ensembles for accelerated healing of chronic wound via pH regulation.Adv Sci 2022; 9(22):e2201254.
|
[141] |
Ren X, Hou Z, Pang B, Gao C, Tang R.Photosynthetic and self-draining biohybrid dressing for accelerating healing of diabetic wound.Adv Healthc Mater 2024; 13(3):e2302287.
|
[142] |
Zhou X, Zhao B, Wang L, Yang L, Chen H, Chen W, et al.A glucose-responsive nitric oxide release hydrogel for infected diabetic wounds treatment.J Control Release 2023; 359:147-160.
|
[143] |
Lu M, Zhang X, Xu D, Li N, Zhao Y.Encoded structural color microneedle patches for multiple screening of wound small molecules.Adv Mater 2023; 35(19):e2211330.
|
[144] |
Zhang T, Cheng X, Xiu J, Liu M, Liu S, Zhang B, et al.pH-responsive injectable multifunctional Pluronic F127/gelatin-based hydrogels with hydrogen production for treating diabetic wounds.ACS Appl Mater Interfaces 2023; 15(48):55392-55408.
|
[145] |
Xu Z, Fan J, Tian W, Ji X, Cui Y, Nan Q, et al.Cellulose-based ph-responsive janus dressing with unidirectional moisture drainage for exudate management and diabetic wounds healing.Adv Funct Mater 2024; 34(3):2307449.
|
[146] |
Xia H, Dong Z, Tang Q, Ding R, Bai Y, Zhou K, et al.Glycopeptide-based multifunctional hydrogels promote diabetic wound healing through pH regulation of microenvironment.Adv Funct Mater 2023; 33(29):2215116.
|
[147] |
Shi C, Zhang Y, Wu G, Zhu Z, Zheng H, Sun X, et al.Hyaluronic acid-based reactive oxygen species-responsive multifunctional injectable hydrogel platform accelerating diabetic wound healing.Adv Healthc Mater 2024; 13(4):e2302626.
|
[148] |
Jia D, Li S, Jiang M, Lv Z, Wang H, Zheng Z.Facile reactive oxygen species-scavenging supramolecular hydrogel to promote diabetic wound healing.ACS Appl Mater Interfaces 2024; 16(13):15752-15760.
|
[149] |
Li Y, Zhao W, Chen S, Zhai H, Wu S.Bioactive electrospun nanoyarn-constructed textile dressing patches delivering Chinese herbal compound for accelerated diabetic wound healing.Mater Des 2024; 237:112623.
|
[150] |
Yang Y, Wang J, Huang S, Li M, Chen J, Pei D, et al.Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing.Natl Sci Rev 2024; 11:nwae044.
|
[151] |
Pranantyo D, Yeo CK, Wu Y, Fan C, Xu X, Yip YS, et al.Hydrogel dressings with intrinsic antibiofilm and antioxidative dual functionalities accelerate infected diabetic wound healing.Nat Commun 2024; 15(1):954.
|
[152] |
Xing C, Zhu H, Dou X, Gao L, Baddi S, Zou Y, et al.Infected diabetic wound regeneration using peptide-modified chiral dressing to target revascularization.ACS Nano 2023; 17(7):6275-6291.
|
[153] |
Sonamuthu J, Cai Y, Liu H, Kasim MSM, Vasanthakumar VR, Pandi B, et al.MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound.Int J Biol Macromol 2020; 153:1058-1069.
|
[154] |
Sun J, Jia W, Qi H, Huo J, Liao X, Xu Y, et al.An antioxidative and active shrinkage hydrogel integratedly promotes re-epithelization and skin constriction for enhancing wound closure.Adv Mater 2024; 36(21):e2312440.
|
[155] |
Chen G, Wang F, Zhang X, Shang Y, Zhao Y.Living microecological hydrogels for wound healing.Sci Adv 2023; 9(21):eadg3478.
|
[156] |
Theocharidis G, Yuk H, Roh H, Wang L, Mezghani I, Wu J, et al.A strain-programmed patch for the healing of diabetic wounds.Nat Biomed Eng 2022; 6(10):1118-1133.
|
[157] |
Huang D, Du J, Luo F, He G, Zou M, Wang Y, et al.Injectable hydrogels with integrated pH probes and ultrasound-responsive microcapsules as smart wound dressings for visual monitoring and on-demand treatment of chronic wounds.Adv Healthc Mater 2024; 13(9):e2303379.
|
[158] |
He D, Liu X, Jia J, Peng B, Xu N, Zhang Q, et al.Magnetic field-directed deep thermal therapy via double-layered microneedle patch for promoting tissue regeneration in infected diabetic skin wounds.Adv Funct Mater 2024; 34(2):2306357.
|
[159] |
Shou Y, Le Z, Cheng HS, Liu Q, Ng YZ, Becker DL, et al.Mechano-activated cell therapy for accelerated diabetic wound healing.Adv Mater 2023; 35(47):e2304638.
|
[160] |
Chen S, Zhu Y, Xu Q, Jiang Q, Chen D, Chen T, et al.Photocatalytic glucose depletion and hydrogen generation for diabetic wound healing.Nat Commun 2022; 13(1):5684.
|
[161] |
Zhu S, Zhao B, Li M, Wang H, Zhu J, Li Q, et al.Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing.Bioact Mater 2023; 26:306-320.
|
[162] |
Mansoor S, Adeyemi SA, Kondiah PPD, Choonara YE.A closed loop stimuli-responsive concanavalin a-loaded chitosan-Pluronic hydrogel for glucose-responsive delivery of short-acting insulin prototyped in rin-5f pancreatic cells.Biomedicines 2023; 11(9):2545.
|
[163] |
Zhao J, Yi Z, Deng G, Li Y, Li J, Qin M, et al.STING modulates iron metabolism to promote liver injury and inflammation in acute immune hepatitis.Free Radic Biol Med 2024; 210:367-377.
|
[164] |
Zhao J, Tuersunmaimaiti M, Ji T, Liu T, Xu F.Hepatoprotective activity of isostrictiniin from Nymphaea candida on Con A-induced acute liver injury in mice.Nat Prod Res 2021; 35(10):1662-1666.
|
[165] |
Matsumoto A, Ikeda S, Harada A, Kataoka K.Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions.Biomacromolecules 2003; 4(5):1410-2146.
|
[166] |
Nagase K.Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications.Adv Colloid Interface Sci 2021; 295:102487.
|
[167] |
Cao M, Wang Y, Hu X, Gong H, Li R, Cox H, et al.Reversible thermoresponsive peptide-PNIPAM hydrogels for controlled drug delivery.Biomacromolecules 2019; 20(9):3601-3610.
|
[168] |
He J, Li Z, Chen J, Wang J, Qiao L, Guo B, et al.NIR/glucose stimuli-responsive multifunctional smart hydrogel wound dressing with NO/O2 dual gas-releasing property promotes infected diabetic wound healing.Chem Eng J 2024; 492:152249.
|
[169] |
He J, Li Z, Wang J, Li T, Chen J, Duan X, et al.Photothermal antibacterial antioxidant conductive self-healing hydrogel with nitric oxide release accelerates diabetic wound healing.Compos, Part B Eng 2023; 266:110985.
|
[170] |
Alghamdi MA.Metal-organic frameworks for diabetic wound healing.Cureus 2023; 15:e39557.
|
[171] |
Wang W, Lu KJ, Yu CH, Huang QL, Du YZ.Nano-drug delivery systems in wound treatment and skin regeneration.J Nanobiotechnology 2019; 17(1):82.
|
[172] |
Ataide JA, Zanchetta B, ÉSantos M, Fava ALM, Alves TFR, Cefali LC, et al.Nanotechnology-based dressings for wound management.Pharmaceuticals 2022; 15(10):1286.
|
[173] |
Solidum JGN, Ceriales JA, Ong EP, Ornos EDB, Relador RJL, Quebral EPB, et al.Nanomedicine and nanoparticle-based delivery systems in plastic and reconstructive surgery.Maxillofac Plast Reconstr Surg 2023; 45(1):15.
|
[174] |
Zhang Y, Li M, Wang Y, Han F, Shen K, Luo L, et al.Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission.Bioact Mater 2023; 26:323-336.
|
[175] |
Fayyazbakhsh F, Khayat MJ, Sadler C, Day D, Huang YW, Leu MC.3D-printed hydrogels dressings with bioactive borate glass for continuous hydration and treatment of second-degree burns. Int J Bioprint, 9 (2023)
|
[176] |
Monavari M, Homaeigohar S, Medhekar R, Nawaz Q, Monavari M, Zheng K, et al.A 3D-printed wound-healing material composed of alginate dialdehyde-gelatin incorporating astaxanthin and borate bioactive glass microparticles.ACS Appl Mater Interfaces 2023; 15(44):50626-50637.
|
[177] |
Pita-Vilar M, Concheiro A, Alvarez-Lorenzo C, Diaz-Gomez L.Recent advances in 3D printed cellulose-based wound dressings: a review on in vitro and in vivo achievements.Carbohydr Polym 2023; 321:121298.
|
[178] |
Beg S, Almalki WH, Malik A, Farhan M, Aatif M, Rahman Z, et al.3D printing for drug delivery and biomedical applications.Drug Discov Today 2020; 25(9):1668-1681.
|
[179] |
Karballaei H Mirzahosseini, Sheikhi M, Najmeddin F, Shirangi M, Mojtahedzadeh M.3D self-assembled nanocarriers for drug delivery.Drug Metab Rev 2023; 55(1–2):140-162.
|
[180] |
Elkasabgy NA, Mahmoud AA, Maged A.3D printing: an appealing route for customized drug delivery systems.Int J Pharm 2020; 588:119732.
|
[181] |
Peng W, Li D, Dai K, Wang Y, Song P, Li H, et al.Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications.Int J Biol Macromol 2022; 208:400-408.
|
[182] |
Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, et al.Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.Biotechnol Adv 2017; 35(5):530-544.
|
[183] |
Nasra S, Patel M, Shukla H, Bhatt M, Kumar A.Functional hydrogel-based wound dressings: a review on biocompatibility and therapeutic efficacy.Life Sci 2023; 334:122232.
|
[184] |
Oliva N, Conde J, Wang K, Artzi N.Designing hydrogels for on-demand therapy.Acc Chem Res 2017; 50(4):669-679.
|
[185] |
Mazza E, Ehret AE.Mechanical biocompatibility of highly deformable biomedical materials.J Mech Behav Biomed Mater 2015; 48:100-124.
|
[186] |
Liang Y, He J, Guo B.Functional hydrogels as wound dressing to enhance wound healing.ACS Nano 2021; 15(8):12687-12722.
|
[187] |
Zhang M, Yang M, Woo MW, Li Y, Han W, Dang X.High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing.Carbohydr Polym 2021; 256:117590.
|
[188] |
Yang G, Zhang Z, Liu K, Ji X, Fatehi P, Chen J.A cellulose nanofibril-reinforced hydrogel with robust mechanical, self-healing, pH-responsive and antibacterial characteristics for wound dressing applications.J Nanobiotechnology 2022; 20(1):312.
|
[189] |
Chen J, He J, Yang Y, Qiao L, Hu J, Zhang J, et al.Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing.Acta Biomater 2022; 146:119-130.
|
[190] |
Tavakoli M, Mirhaj M, Salehi S, Varshosaz J, Labbaf S, Golshirazi A, et al.Coaxial electrospun angiogenic nanofiber wound dressing containing advanced platelet rich-fibrin.Int J Biol Macromol 2022; 222:1605-1618.
|
[191] |
Meng Q, Li Y, Wang Q, Wang Y, Li K, Chen S, et al.Recent advances of electrospun nanofiber-enhanced hydrogel composite scaffolds in tissue engineering.J Manuf Process 2024; 123:112-127.
|
[192] |
Dong H, Wang L, Du L, Wang X, Li Q, Wang X, et al.Smart polycationic hydrogel dressing for dynamic wound healing.Small 2022; 18(25):e2201620.
|
[193] |
Zhang H, Hu H, Dai Y, Xin L, Pang Q, Zhang S, et al.A conductive multifunctional hydrogel dressing with the synergistic effect of ROS-scavenging and electroactivity for the treatment and sensing of chronic diabetic wounds.Acta Biomater 2023; 167:348-360.
|
[194] |
Sun X, Agate S, Salem KS, Lucia L, Pal L.Hydrogel-based sensor networks: compositions, properties, and applications-a review.ACS Appl Bio Mater 2021; 4(1):140-162.
|
[195] |
Ding C, Liu X, Zhang S, Sun S, Yang J, Chai G, et al.Multifunctional hydrogel bioscaffolds based on polysaccharide to promote wound healing: a review.Int J Biol Macromol 2024; 259:129356.
|
[196] |
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW.Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics.Bioact Mater 2022; 8:267-295.
|
[197] |
Miller BJ, Blanks W, Yagi B.The 510(k) third party review program: promise and potential.J Med Syst 2023; 47(1):93.
|
[198] |
Lorenz K, Preem L, Sagor K, Putrin Mš, Tenson T, Kogermann K.Development of in vitro and ex vivo biofilm models for the assessment of antibacterial fibrous electrospun wound dressings.Mol Pharm 2023; 20(2):1230-1246.
|
[199] |
Savencu I, Iurian S, Bogdan C, Sp Nînu, Suciu M, Pop A, et al.Design, optimization and pharmaceutical characterization of wound healing film dressings with chloramphenicol and ibuprofen.Drug Dev Ind Pharm 2024; 50(5):446-459.
|
[200] |
Minsart M, Van S Vlierberghe, Dubruel P, Mignon A.Commercial wound dressings for the treatment of exuding wounds: an in-depth physico-chemical comparative study.Burns Trauma 2022; 10:tkac024.
|
[201] |
Mbithi F, Worsley PR.Adhesives for medical application—peel strength testing and evaluation of biophysical skin response.J Mech Behav Biomed Mater 2023; 148:106168.
|
[202] |
G Tębarowski, J Ięśkowiak, Wiatrak B.Investigation of the properties of linen fibers and dressings.Int J Mol Sci 2022; 23(18):10480.
|
[203] |
Concei LDção, Cuevas-Suárez CE, Piva E, Lund RG, Leite FRM, Concei LDÇÃo.Biological and mechanical characterization of commercial and experimental periodontal surgical dressings.Braz Oral Res 2021; 35:e045.
|
[204] |
MohdRazip Wee MF, Tabata Y, BtHj Idrus R, Nordin A, Fauzi MB.Antibacterial-integrated collagen wound dressing for diabetes-related foot ulcers: an evidence-based review of clinical studies. Polymers 2020;12(9):2168.
|
[205] |
Weller CD, Team V, Sussman G.First-line interactive wound dressing update: a comprehensive review of the evidence.Front Pharmacol 2020; 11:155.
|
[206] |
Chen M, Chang C, Levian B, Woodley DT, Li W.Why are there so few FDA-approved therapeutics for wound healing?.Int J Mol Sci 2023; 24(20):15109.
|
[207] |
Xu W, Klumbys E, Ang EL, Zhao H.Emerging molecular biology tools and strategies for engineering natural product biosynthesis.Metab Eng Commun 2020; 10:e00108.
|