二氧化碳地质封存系统的腐蚀与材料失效评述

Xin Fan, Qing Hu, Y. Frank Cheng

工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 41-58.

PDF(2681 KB)
PDF(2681 KB)
工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 41-58. DOI: 10.1016/j.eng.2025.02.021
Review

 二氧化碳地质封存系统的腐蚀与材料失效评述

作者信息 +

Corrosion and Material Degradation in Geological CO2 Storage: A Critical Review

Author information +
History +

Abstract

At present, carbon capture and storage (CCS) is the only mature and commercialized technology capable of effectively and economically reducing greenhouse gas emissions to achieve a significant and immediate impact on the CO2 level on Earth. Notably, long-term geological storage of captured CO2 has emerged as a primary storage method, given its minimal impact on surface ecological environments and high level of safety. The integrity of CO2 storage wellbores can be compromised by the corrosion of steel casings and degradation of cement in supercritical CO2 storage environments, potentially leading to the leakage of stored CO2 from the sites. This critical review endeavors to establish a knowledge foundation for the corrosion and materials degradation associated with geological CO2 storage through an in-depth examination and analysis of the environments, operation, and the state-of-the-art progress in research pertaining to the topic. This article discusses the physical and chemical properties of CO2 in its supercritical phase during injection and storage. It then introduces the principle of geological CO2 storage, considerations in the construction of storage systems, and the unique geo–bio–chemical environment involving aqueous media and microbial communities in CO2 storage. After a comprehensive analysis of existing knowledge on corrosion in CO2 storage, including corrosion mechanisms, parametric effects, and corrosion rate measurements, this review identifies technical gaps and puts forward potential avenues for further research in steel corrosion within geological CO2 storage systems.

Keywords

Geological CO2 storage / Supercritical CO2 / Geo–bio–chemical environments / Corrosion / Cement degradation

引用本文

导出引用
Xin Fan, Qing Hu, Y. Frank Cheng. . Engineering. 2025, 48(5): 41-58 https://doi.org/10.1016/j.eng.2025.02.021

参考文献

[1]
Cook G, Zakkour P, Neades S, Dixon T.CCS under Article 6 of the Paris Agreement.Int J Greenhouse Gas Control 2024; 134:104110.
[2]
Ma J, Li L, Wang H, Du Y, Ma J, Zhang X, et al.Carbon capture and storage: history and the road ahead.Engineering 2022; 14:33-43.
[3]
Lohwasser R, Madlener R.Economics of CCS for coal plants: impact of investment costs and efficiency on market diffusion in Europe.Energy Econ 2012; 34:850-863.
[4]
Kazemifar F.A review of technologies for carbon capture, sequestration, and utilization: cost, capacity, and technology readiness.Greenhouse Gas Sci Technol 2022; 12:200-230.
[5]
Li Q, Wu Z, Bai Y, Yin X, Li X.Thermo–hydro–mechanical modeling of CO2 sequestration system around fault environment.Pure Appl Geophys 2006; 162:2585-2593.
[6]
Lin Q, Zhang X, Wang T, Zheng C, Gao X.Technical perspective of carbon capture, utilization, and storage.Engineering 2022; 14:27-32.
[7]
Grobe M, Pashin JC, Dodge RL.Carbon dioxide sequestration in geological media—state of the science.Tulsa: American Association of Petroleum Geologists; 2009.
[8]
Kou Z, Wang T, Chen Z, Jing J.A fast and reliable methodology to evaluate maximum CO2 storage capacity of depleted coal seams: a case study.Energy 2021; 231:120992.
[9]
Ali M, Jha NK, Pal N, Keshavarz A, Hoteit H, Sarmadivaleh M.Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook.Earth Sci Rev 2022; 225:103895.
[10]
Mahmoodpour S, Rostami B.Design-of-experiment-based proxy models for the estimation of the amount of dissolved CO2 in brine: a tool for screening of candidate aquifers in geo-sequestration.Int J Greenhouse Gas Control 2017; 56:261-277.
[11]
Riaz A, Cinar Y.Carbon dioxide sequestration in saline formations: part I—review of the modeling of solubility trapping.J Petro Sci Eng 2014; 124:367-380.
[12]
Heddle G, Herzog H, Klett M.The economics of CO2 storage.Cambridge: Massachusetts Institute of Technology; 2003.
[13]
Holloway S, Rochelle C, Bateman K.The underground disposal of carbon dioxide.Report. Nottingham: British Geological Survey; 1996.
[14]
Holloway S.An overview of the underground disposal of carbon dioxide.Energy Convers Manage 1997; 38:S193-S198.
[15]
Stevens SH, Kuuskraa VA, Gale J.Sequestration of CO2 in depleted oil and gas fields: global capacity, costs, and barriers.In: Proceedings of Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies (GHG T-5); 2000 Aug 13–16; Cairns, QL D, Australia. CSIRO Publishing; 2000.
[16]
Carbon sequestration—research and development Report.Washington, DC: US Department of Energy; 1999.
[17]
The global status of CCS Report 2023.Report.Melbourne: Global CCS Institute Australia; 2023.
[18]
Elliot TR, Buscheck TA, Celia M.Active CO2 reservoir management for sustainable geothermal energy extraction and reduced leakage.Greenhouse Gas Sci Technol 2013; 3:50-65.
[19]
Li Q, Cheng YF.Modelling of corrosion of steel tubing in CO2 storage.Greenhouse Gas Sci Technol 2016; 6:797-811.
[20]
Sun H, Wang H, Zeng Y, Liu J.Corrosion challenges in supercritical CO2 transportation, storage, and utilization—a review.Renew Sustain Energy Rev 2023; 179:113292.
[21]
Prasad SK, Sangwai JS, Byun HS.A review of the supercritical CO2 fluid applications for improved oil and gas production and associated carbon storage.
[22]
Zhang M, Bachu S.Review of integrity of existing wells in relation to CO2 geological storage: what do we know?.Int J Greenhouse Gas Control 2011; 5:826-840.
[23]
Hassani S, Vu TN, Rosli NR, Esmaeely SN, Choi YS, Young D.Wellbore integrity and corrosion of low alloy and stainless steels in high pressure CO2 geologic storage environments: an experimental study.Int J Greenhouse Gas Control 2014; 23:30-43.
[24]
Xiang Y, Xu M, Choi YS.State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models.Corros Eng Sci Technol 2017; 52:485-509.
[25]
Iyer J, Lackey G, Edvardsen L.A review of well integrity based on field experience at carbon utilization and storage sites.Int J Greenhouse Gas Control 2022; 113:103533.
[26]
Miyata Y, Kimura M, Koseki T.Martensitic stainless steel seamless linepipe with superior weldability and CO2 corrosion resistance.In: Proceeding of Corrosion 1997; 1997 Mar 9–14; New Orleans, L A, US A. National Association of Corrosion Engineering; 1997.
[27]
Song Y, Jun S, Na Y, Kim K.Geomechanical challenges during geological CO2 storage: a review.Chem Eng J 2023; 456:140968.
[28]
Choi YS, Young D, Nesic N, Gray LGS.Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: a literature review.Int J Greenhouse Gas Control 2013; 16:70-77.
[29]
.Corrosion and selection of materials for carbon capture and storage.Report. Paris: International Energy Agency; 2010.
[30]
Xiang Y.Corrosion issues of carbon capture, utilization, and storage.Mater Perf 2018; 57:32-35.
[31]
Bai M, Zhang Z, Fu X.A review on well integrity issues for CO2 geological storage and enhanced gas recovery.Renew Sustain Energy Rev 2016; 59:920-926.
[32]
Talabani S, Atlas B, Al-Khatiri M, Islam M.An alternate approach to downhole corrosion mitigation.J Petro Sci Eng 2000; 26:41-48.
[33]
Crow W, Carey JW, Gasda S, Williams DB, Celia M.Wellbore integrity analysis of a natural CO2 producer.Int J Greenhouse Gas Control 2010; 4:186-197.
[34]
Carroll S, Carey JW, Dzombak D, Huerta NJ, Li L, Richard T, et al.Review: role of chemistry, mechanics, and transport on well integrity in CO2 storage environments.Int J Greenhouse Gas Control 2016; 49:149-160.
[35]
Bachu S, Watson TL.Review of failures for wells used for CO2 and acid gas injection in Alberta.Canada. Energy Procedia 2009; 1:3531-3537.
[36]
Chen S, Wang H, Liu Y, Lan W, Lv X, Sun B, et al.Root cause analysis of tubing and casing failures in low-temperature carbon dioxide injection well.Eng Fail Anal 2019; 104:873.
[37]
Laumb JD, Glazewski KA, Hamling JA, Azenkeng A, Kalenze N, Watson TL.Corrosion and failure assessment for CO2 EOR and associated storage in the Weyburn field.Energy Procedia 2017; 114:5173-5181.
[38]
Zhi Z, Yanjun L, Chao Z.Wellbore integrity design of high temperature gas wells containing CO2.Nat Gas Indu 2013; 33:79-86.
[39]
Zhang Z, Shi T, Wu Y.Discussion of supercritical carbon dioxide and hydrogen sulfide induced drilling and production accidents in high sour gas well.Drill Prod Technol 2007; 30:94.
[40]
Eigbe PA, Ajayi OO, Olakoyejo OT, Fadipe OL, Efe S, Adelaja AO.A general review of CO2 sequestration in underground geological formations and assessment of depleted hydrocarbon reservoirs in the Niger Delta.Appl Energy 2023; 350:121723.
[41]
Span R, Wagner W.A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa.J Phys Chem Ref Data 1996; 25:1509-1596.
[42]
Humayun R, Tomasko DL.High-resolution adsorption isotherms of supercritical carbon dioxide on activated carbon.AICHE J 2000; 10:2065-2075.
[43]
Guo M, Lu X, Nielsen CP, McElroy MB, Shi W, Chen Y, et al.Prospects for shale gas production in China: implications for water demand.Renew Sustain Energy Rev 2016; 66:742-750.
[44]
Zhao Q, Li Y.The influence of impurities on the transportation safety of an anthropogenic CO2 pipeline.Proc Safety Environ Prot 2024; 92:80-92.
[45]
Zhao Q, Li Y, Li S.Safety control on the chocking process of supercritical carbon dioxide pipeline.Adv Mech Eng 2014; 9:1-10.
[46]
Sun J.Research on common technologies of CO2 supercritical fluid extraction of flavonoids.Changchun: Changchun University of Traditional Chinese Medicine; 2009. Chinese.
[47]
Kendall JL, Canelas DA, Young JL, DeSimone JM.Polymerizations in supercritical carbon dioxide.Chem Rev 1999; 99:543-564.
[48]
De E Visser, Hendriks C, Barrio M, Molnvik MJ, De G Koeijer, Liljemark S, et al.Dynamis CO2 quality recommendations.Int J Greenhouse Gas Control 2008; 2:478-484.
[49]
Halseid M, Dugstad A, Morland B.Corrosion and bulk phase reactions in CO2 transport pipelines with impurities: review of recent published studies.Energy Procedia 2014; 63:2557-2569.
[50]
Long term integrity of CO2 storage—well abandonment.Report.Paris: International Energy Agency; 2009.
[51]
Cooper C.A technical basis for carbon dioxide storage.Cambridge: CPL Press; 2009.
[52]
Jayasekara DW, Ranjith PG, Wanniarachchi WAM, Rathnaweera TD.Understanding the chemico–mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: a review study.J Supercrit Fluids 2020; 161:104819.
[53]
Zheng Y, Chen S, Zhang W.Numerical simulation of carbon dioxide geological storage in the Jiangling Depression of the Jianghan Basin.Geologic Sci Technol Info 2009; 28:75-82.
[54]
Bachu S.CO2 storage in geological media: role, means, status and barriers to deployment.Prog Energy Comb Sci 2008; 34:254-273.
[55]
Rutqvist J, Cappa F, Rinaldi AP, Godano M.Modeling of induced seismicity and ground vibrations associated with geologic CO2 storage, and assessing their effects on surface structures and human perception.Int J Greenhouse Gas Control 2014; 24:64-77.
[56]
Zoback MD, Gorelick SM.Earthquake triggering and large-scale geologic storage of carbon dioxide.Proc Nat Acad Sci 2012; 109:10164-10168.
[57]
Duguid A, Glier J, Heinrichs M.Practical leakage risk assessment for CO2 assisted enhanced oil recovery and geologic storage in Ohio’s depleted oil fields.Int J Greenhouse Gas Control 2021; 109:103338.
[58]
Liu Y, Liu Q.Review of gel systems for CO2 geological storage leakage and conformance control for enhanced oil recovery: mechanisms, recent advances, and future perspectives.J Petro Sci Eng 2022; 219:111110.
[59]
Li Q, Liu G.Risk assessment of the geological storage of CO2: a review.
[60]
Castañeda-Herrera CA, Black JR, Llanos EM, Stevens GW, Haese RR.Formation of an amorphous silica gel barrier under CO2 storage conditions.Int J Greenhouse Gas Control 2018; 78:27-36.
[61]
Kalam S, Olayiwola T, Al-Rubaii MM, Amaechi BI, Jamal MS, Awotunde AA.Carbon dioxide sequestration in underground formations: review of experimental, modeling, and field studies.J Petro Expl Prod 2021; 11:303-325.
[62]
Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S, Christensen NP.CO2 storage capacity estimation: methodology and gaps.Int J Greenhouse Gas Control 2007; 1:430-443.
[63]
Jin M, Pickup G, Mackay E, Todd A, Sohrabi M, Monaghan A.Static and dynamic estimates of CO2-storage capacity in two saline formations in the UK.SPE J 2012; 17(4):1108-1118.
[64]
Ubani CE, Ikpaisong US, Uti OS.Sequestration of CO2 in depleted reservoirs: a case study of a Niger Delta field.Int Res J Adv Eng Sci 2019; 4:264-269.
[65]
Ojo AC, Tse AC.Geological characterization of depleted oil and gas reservoirs for carbon sequestration potentials in a field in the Niger Delta.Nigeria. J Appl Sci Environ Manag 2016; 20:45-55.
[66]
Kelemen P, Benson SM, H Pélène, Psarras P, Wilcox J.An overview of the status and challenges of CO2 storage in minerals and geological formations.Front Clim 2019; 1:9.
[67]
Cavanagh AJ, Haszeldine RS.The Sleipner storage site: capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation.Int J Greenhouse Gas Control 2014; 21:101-121.
[68]
Baklid A, Korbøl R, Owren G.Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer.In: Proceedings of SPE Annual Technical Conference and Exhibition; 1996 Oct 6–9; Denver, Colorado. Richardson: One Petro; 1996.
[69]
Bosshart NW, Azzolina NA, Ayash SC.Quantifying the effects of depositional environment on deep saline formation CO2 storage efficiency and rate.Int J Greenhouse Gas Control 2018; 69:8-19.
[70]
Gholami R, Raza A, Iglauer S.Leakage risk assessment of a CO2 storage site: a review.Earth Sci Rev 2021; 223:103849.
[71]
Wellman TP, Grigg RB, McPherson BJ, Svec RK, Lichtner PC.Evaluation of CO2–brine–reservoir rock interaction with laboratory flow tests and reactive transport modeling.In: Proceeding of International Symposium on Oilfield Chemistry; 2003 Feb 5–7; Houston, T X, US A. Society of Petroleum Engineering; 2003.
[72]
Gaus I.Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks.Int J Greenhouse Gas Control 2010; 4:73-89.
[73]
Espinoza DN, Kim SH, Santamarina JC.CO2 geological storage—geotechnical implications.J Civil Eng 2011; 15:707-719.
[74]
Vilarrasa V, Rutqvist J.Thermal effects on geologic carbon storage.Earth Sci Rev 2017; 165:245-256.
[75]
Amid A, Mignard D, Wilkinson M.Seasonal storage of hydrogen in a depleted natural gas reservoir.Int J Hydro Energy 2016; 41:5549-5558.
[76]
Dopffel N, Jansen S, Gerritse J.Microbial side effects of underground hydrogen storage–knowledge gaps, risks and opportunities for successful implementation.Int J Hydro Energy 2021; 46:8594-8606.
[77]
Papadias DD, Ahluwalia RK.Bulk storage of hydrogen.Int J Hydro Energy 2021; 46:34527-34541.
[78]
Zeng L, Sarmadivaleh M, Saeedi A, Chen Y, Zhong Z, Xie Q.Storage integrity during underground hydrogen storage in depleted gas reservoirs.Earth Sci Rev 2023; 247:104625.
[79]
Zhang G, Cheng Y.Localized corrosion of carbon steel in a CO2–saturated oilfield formation water.Electrochim Acta 2011; 56:1676-1685.
[80]
Liu H, Cheng Y.Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria.Colloids Surf B Biointerf 2020; 190:110899.
[81]
Bai P, Zhao H, Zheng S, Chen C.Initiation and developmental stages of steel corrosion in wet H2S environments.Corros Sci 2015; 93:109-119.
[82]
Sherar B, Power I, Keech P, Mitlin S, Southam G, Shoesmith D.Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion.Corros Sci 2011; 53:955-960.
[83]
Ugarte ER, Salehi S.A review on well integrity issues for underground hydrogen storage.J Energy Res Technol 2022; 144:042001.
[84]
Wei B, Xu J, Sun C, Cheng Y.Internal microbiologically influenced corrosion of natural gas pipelines: a critical review.J Nat Gas Sci Eng 2022; 102:104581.
[85]
Hua Y, Barker R, Neville A.Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2–saturated water and water-saturated/unsaturated supercritical CO2.J Supercrit Fluid 2015; 97:224-237.
[86]
Li S, Xia D, Chen Z, Zhao W, Chen L, Lin J.Experimental study on the change of coal structure and microbial community structure during supercritical–CO2–H2O–microorganisms–coal interaction process.Environ Technol Innov 2023; 30:103036.
[87]
Feng X, Guo H, Feng X.Denitrification induced calcium carbonate precipitation by indigenous microorganisms in coal seam and its application potential in CO2 geological storage.Fuel 2024; 365:131276.
[88]
Feng Y, Yan W, Zhang L, Wang Y.Corrosion in CO2 geological utilization and storage.In: Zhang L, editor. Corrosion in CO2 capture, transportation, geological utilization and storage: causes and mitigation strategies. Singapore: Springer; 2023.
[89]
Barker R, Hua Y, Neville A.Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)—a review.Int Mater Rev 2017; 62:1-31.
[90]
Zhang G, Cheng Y.On the fundamentals of electrochemical corrosion of X65 steel in CO2–containing formation water in the presence of acetic acid in petroleum production.Corros Sci 2009; 51:87-94.
[91]
Nesic S.Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines.Energy Fuels 2012; 26:4098-4111.
[92]
Singer M, Chong L, Mohsen A, Jenkins A.Top of line corrosion—part 1: review of the mechanism and laboratory experience.In: Proceedings of Corrosion 2014; 2014 Mar 9–13; San Antonio, T X, US A. Richardson: One Petro; 2014.
[93]
Nesic S.Key issues related to modelling of internal corrosion of oil and gas pipelines—a review.Corros Sci 2007; 49:4308-4338.
[94]
Li Y, Wang Z, Guo X, Zhang G.Galvanic corrosion between N80 carbon steel and 13Cr stainless steel under supercritical CO2 conditions.Corros Sci 2019; 147:260-272.
[95]
Zhao M, Fu A, Qin H, Xie J, Xie G, Long Y, et al.Current status and future research prospects of high temperature and high pressure gas well tubular column corrosion.Surf Technol 2018; 47:44-50.
[96]
Puentes-Cala E, Tapia-Perdomo V, Espinosa-Valbuena D, Reyes-Reyes M, Quintero-Santander D, Vasquez-Dallos S, et al.Microbiologically influenced corrosion: the gap in the field.Front Environ Sci 2022; 10:924842.
[97]
Zhou Y, Xie F, Wang D, Wang Y, Wu M.Carbon capture, utilization and storage (CCUS) pipeline steel corrosion failure analysis: a review.Eng Fail Anal 2023; 155:107745.
[98]
Bonto M, Jahanbani M, Nick HM.Microbial-induced risks associated with CO2 storage.In: Proceedings of 16th Greenhouse Gas Control Technol Conf (GHG T-16); 2022 Oct 23–27; Lyon, France. CSIRO Publishing; 2022.
[99]
Mu A, Boreham C, Leong H, Haese R, Moreau J.Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment.Front Microbiol 2014; 5:100209.
[100]
Peng X, Liu X.Modification of DW model for corrosion rate of shale gas pipeline under the synergistic corrosion of SRB and CO2.Anti Corros Method 2021; 68:150-159.
[101]
Liu H, Cheng Y, Xu D, Liu H.Effect of iron oxidizing bacteria biofilm on corrosion inhibition of imidazoline derivative in CO2–containing oilfield produced water with organic carbon source starvation.J Electrochem Soc 2018; 165:C354-C361.
[102]
Liu H, Gu T, Zhang G, Liu H, Cheng Y.Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2–saturated oilfield produced water with carbon source starvation.Corros Sci 2018; 136:47-59.
[103]
Liu H, Cheng Y.Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions.Corros Sci 2018; 133:178-189.
[104]
Kapusta SD, Canter SC.Corrosion control in CO2 enhanced oil recovery.In: Proceedings of Corrosion 1994; Houston, T X, US A. Richardson: One Petro; 1994.
[105]
Cui G, Yang Z, Liu J, Li Z.A comprehensive review of metal corrosion in a supercritical CO2 environment.Int J Greenhouse Gas Control 2019; 90:102814.
[106]
López DA, P Térez, Simison SN.The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion.A state-of-the-art appraisal. Mater Design 2003; 24:561-575.
[107]
Hua Y, Mohammed S, Barker R, Neville A.Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO2–saturated brine.J Mater Sci Technol 2020; 41:21-32.
[108]
Wei L, Gao K.Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO2–saturated aqueous environments.J Alloy Compd 2019; 792:328-340.
[109]
Choi Y, Hassani S, Vu TN, Ne Sšić, Abas AZB.Effect of H2S on the corrosion behavior of pipeline steels in supercritical and liquid CO2 environments.Corrosion 2016; 72:999-1009.
[110]
Hua Y, Jonnalagadda R, Zhang L, Neville A, Barker R.Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2.Int J Greenhouse Gas Control 2017; 64:126-136.
[111]
Dugstad A, Hemmer H, Seiersten M.Effect of steel microstructure on corrosion rate and protective iron carbonate film formation.Corrosion 2001; 57:369-378.
[112]
Palacios CA, Shadley JR.Characteristics of corrosion scales on steels in a CO2-saturated NaCl brine.Corrosion 1991; 47:122-127.
[113]
Xiang Y, Wang Z, Yang X, Li Z, Ni W.The upper limit of moisture content for supercritical CO2 pipeline transport.J Supercriti Fluids 2012; 67:14-21.
[114]
Ayello F, Evans K, Sridhar N, Thodla R.Effect of liquid impurities on corrosion of carbon steel in supercritical CO2.In: Proceedings of 2010 8th International Pipeline Conference; 2010 Sep 27–Oct 1; Calgary, A B, Canada. ASM E; 2010.
[115]
Yevtushenko O, Bäßler R.Water impact on corrosion resistance of pipeline steels in circulating supercritical CO2 with SO2 and NO2 impurities.In: Proceedings of Corrosion 2014; 2014 Mar 9–13; San Antonio, T X, US A. Richardson: One Petro; 2014.
[116]
Hua Y, Barker R, Neville A.The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments.Appl Surf Sci 2015; 356:499-511.
[117]
Xu M, Li W, Zhou Y, Yang X, Wang Z, Li Z.Effect of pressure on corrosion behavior of X60, X65, X70, and X80 carbon steels in water-unsaturated supercritical CO2 environments.Int J Greenhouse Gas Control 2016; 51:357-368.
[118]
Paschke B, Kather A.Corrosion of pipeline and compressor materials due to impurities in separated CO2 from fossil-fuelled power plants.Energy Procedia 2012; 23:207-215.
[119]
Porter RTJ, Fairweather M, Pourkashanian M, Woolley RM.The range and level of impurities in CO2 streams from different carbon capture sources.Int J Greenhouse Gas Control 2015; 36:161-174.
[120]
Peletiri SP, Rahmanian N, Mujtaba IM.Grading the impact of impurities in rich CO2 pipeline fluids.Chem Eng Trans 2018; 70:175-180.
[121]
DuBose B.Researchers Develop Superhydrophobic Coating for Offshore Drilling Pipes.Mater Perf 2020; 59(1):19-21.
[122]
Wang W, Shen K, Tang S, Shen R, Parker T, Wang Q.Synergistic effect of O2 and SO2 gas impurities on X70 steel corrosion in water-saturated supercritical CO2.Process Safety Environ Prot 2019; 130:57-66.
[123]
Choi Y, Nesic S, Young D.Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2−water environments.Environ Sci Technol 2010; 44:9233-9238.
[124]
Rosli NR, Choi Y, Young D.Impact of oxygen ingress in CO2 corrosion of mild steel.In: Proceedings of Corrosion 2014; 2014 Mar 9–13; San Antonio, T X, US A. Richardson: One Petro; 2014.
[125]
Brown B, Nesic S, Parakala SR.CO2 corrosion in the presence of trace amounts of H2S.In: Proceedings of Corrosion; 2004 Mar 28–Apr 1; New Orleans, L A, US A. Richardson: One Petro; 2004.
[126]
Sun C, Sun J, Wang Y, Lin X, Li X, Cheng X.Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system.Corros Sci 2016; 107:193-203.
[127]
Ayello F, Evans K, Thodla R, Sridhar N.Effect of impurities on corrosion of steel in supercritical CO2.In: Proceedings of Corrosion 2010; 2010 Mar 14–18; San Antonio TX, US A. Richardson: One Petro; 2010.
[128]
Sun J, Sun C, Wang Y.Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system.Ind Eng Chem Res 2018; 57:2365-2375.
[129]
Sui P, Sun J, Hua Y, Liu H, Zhou M, Zhang Y, et al.Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S.Int J Greenhouse Gas Control 2018; 73:60-69.
[130]
Zhang Y, Pang X, Qu S, Li X, Gao K.Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition.Corros Sci 2012; 59:186-197.
[131]
Wei L, Pang X, Liu C, Gao K.Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment.Corros Sci 2015; 100:404-420.
[132]
Duguid A, Radonjic M, Scherer GW.Degradation of cement at the reservoir/cement interface from exposure to carbonated brine.Int J Greenhouse Gas Control 2011; 5:1413-1428.
[133]
Koukouzas N, Kypritidou Z, Vasilatos C, Tsoukalas N, Rochelle CA, Purser G.Geochemical modeling of carbonation of hydrated oil well cement exposed to CO2–saturated brine solution.Appl Geochem 2017; 85:35-48.
[134]
Omosebi O, Maheshwari H, Ahmed R, Shah S, Osisanya S, Hassani S.Degradation of well cement in HPHT acidic environment: effects of CO2 concentration and pressure.Cement Concrete Comp 2016; 74:54-70.
[135]
Abid K, Gholami R, Choate P, Nagaratnam BH.A review on cement degradation under CO2-rich environment of sequestration projects.J Nat Gas Sci Eng 2015; 27:1149-1157.
[136]
Sun C, Ding T, Sun J, Lin X, Zhao W, Chen H.Insights into the effect of H2S on the corrosion behavior of N80 steel in supercritical CO2 environment.J Mater Res Technol 2023; 26:5462-5477.
[137]
Cui G, Ren S, Dou B, Ning F.Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO2: the superiority and existing problems.Geosci Front 2021; 12:101078.
[138]
Qian S, Cheng Y.Corrosion of X52 steel under thin layers of water condensate in wet gas pipelines.J Nat Gas Sci Eng 2019; 68:102921.
[139]
Liu J, Jia M, Song C.Controllable enhancement of mass transfer kinetics related with the thickness of organic thin-layer liquid membrane on surface of gas bubble.Chem Eng Process 2022; 172:108775.
[140]
Yin K, Liu H, Cheng Y.Microbiologically influenced corrosion of X52 pipeline steel in thin layers of solution containing sulfate reducing bacteria trapped under disbonded coating.Corros Sci 2018; 145:271-282.
[141]
Li J, Liu Z, Du C, Li X.Study on the corrosion behaviour of API X65 steel in wet gas environment containing CO2.Corros Eng Sci Technol 2017; 52:317-323.
[142]
Sim S, Bocher F, Cole IS, Chen XB, Birbilis N.Investigating the effect of water content in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines.Corrosion 2014; 70:185-195.
[143]
Al-Siyabi I.Effect of impurities on CO2 stream properties [dissertation].
[144]
Tang S, Zhu C, Cui G, Xing X, Mu J, Li Z.Analysis of internal corrosion of supercritical CO2 pipeline.Corros Rev 2021; 39:219-241.
[145]
Han J, Carey JW, Zhang J.A coupled electrochemical–geochemical model of corrosion for mild steel in high-pressure CO2–saline environments.Int J Greenhouse Gas Control 2011; 5:777-787.
[146]
Xiang Y, Wang Z, Xu M, Li Z, Ni W.A mechanistic model for pipeline steel corrosion in supercritical CO2–SO2–H2O environments.J Supercrit Fluid 2013; 82:1-12.
[147]
Souza CAC, Ribeiro DV, Kiminami CS.Corrosion resistance of Fe-Cr-based amorphous alloys: an overview.J Non Crystal Solids 2016; 442:56-66.
[148]
Wu Q, Zhang Z, Dong X, Yang J.Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments.Corros Sci 2013; 75:400-408.
[149]
Tosangthum N, Morakotjinda M, Krataitong R, Wila P, Yodkaew T, Vetayanugul B.Promoting of bainitic transformation in pre-alloyed Fe-Cr-Mo steels with different compositions by nickel additions.Mater Today Proc 2018; 5:9351-9358.
[150]
Skovhus TL, Eckert RB, Rodrigues E.Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—overview and a North Sea case study.J Biotechnol 2017; 256:31-45.
[151]
Kalsar R, Ray RK, Suwas S.Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in Fe-12Mn-0.5C austenitic steel.Mater Sci Eng A 2018; 729:385-397.
[152]
Chauhan DS, Quraishi MA, Sorour AA, Verma C.A review on corrosion inhibitors for high-pressure supercritical CO2 environment: challenges and opportunities.J Petro Sci Eng 2022; 215:110695.
基金
 
PDF(2681 KB)

Accesses

Citation

Detail

段落导航
相关文章

/