高温稳定分散颗粒凝胶在碳捕集、利用与封存(CCUS)中的增强调驱应用

Lin Du, Yao-Yu Xiao, Zhi-Chao Jiang, Hongbo Zeng, Huazhou Li

工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 128-140.

PDF(4445 KB)
PDF(4445 KB)
工程(英文) ›› 2025, Vol. 48 ›› Issue (5) : 128-140. DOI: 10.1016/j.eng.2025.04.002
Article

 高温稳定分散颗粒凝胶在碳捕集、利用与封存(CCUS)中的增强调驱应用

作者信息 +

High-Temperature Stable Dispersed Particle Gel for Enhanced Profile Control in Carbon Capture, Utilization, and Storage (CCUS) Applications

Author information +
History +

Abstract

CO2-responsive gels, which swell upon contact with CO2, are widely used for profile control to plug high-permeability gas flow channels in carbon capture, utilization, and storage (CCUS) applications in oil reservoirs. However, the use of these gels in high-temperature CCUS applications is limited due to their reversible swelling behavior at elevated temperatures. In this study, a novel dispersed particle gel (DPG) suspension is developed for high-temperature profile control in CCUS applications. First, we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide (PAAm) network and a crosslinked sodium alginate (SA) network. The hydrogel is then sheared in water to form a pre-prepared DPG suspension. To enhance its performance, the gel particles are modified by introducing potassium methylsilanetriolate (PMS) upon CO2 exposure. Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles, over twice their original size. Moreover, subjecting the new DPG suspension to a 100 °C environment for 24 h demonstrates that its gel particle sizes do not decrease, confirming irreversible swelling, which is a significant advantage over the traditional CO2-responsive gels. Thermogravimetric analysis further indicates improved thermal stability compared to the pre-prepared DPG particles. Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3% in plugging an ultra-high permeability sandpack, whereas the pre-prepared DPG suspension achieves only 82.8%. With its high swelling ratio, irreversible swelling at high temperatures, enhanced thermal stability, and superior plugging performance, the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.

Keywords

Carbon capture, utilization, and storage / Profile control / Dispersed particle gel / Double-network hydrogel / Irreversible swelling

引用本文

导出引用
Lin Du, Yao-Yu Xiao, Zhi-Chao Jiang. . Engineering. 2025, 48(5): 128-140 https://doi.org/10.1016/j.eng.2025.04.002

参考文献

[1]
Roefs P, Moretti M, Welkenhuysen K, Piessens K, Compernolle T.CO2–enhanced oil recovery and CO2 capture and storage: an environmental economic trade-off analysis.J Environ Manage 2019; 239:167-177.
[2]
Rui Z, Zeng L, Dindoruk B.Challenges in the large-scale deployment of CCUS.Engineering 2025; 44:17-20.
[3]
Tapia JFD, Lee JY, Ooi RE, Foo DC, Tan RR.A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems.Sustain Prod Consump 2018; 13:1-15.
[4]
Ajayi T, Gomes JS, Bera A.A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches.Petrol Sci 2019; 16:1028-1063.
[5]
Kumar N, Sampaio MA, Ojha K, Hoteit H, Mandal A.Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: a review.Fuel 2022; 330:125633.
[6]
Liu Y, Rui Z.A storage-driven CO2 EOR for a net-zero emission target.Engineering 2022; 18:79-87.
[7]
Azzolina NA, Nakles DV, Gorecki CD, Peck WD, Ayash SC, Melzer LS, et al.CO2 storage associated with CO2 enhanced oil recovery: a statistical analysis of historical operations.Int J Greenh Gas Con 2015; 37:384-397.
[8]
Massarweh O, Abushaikha AS.A review of recent developments in CO2 mobility control in enhanced oil recovery.Petroleum 2022; 8(3):291-317.
[9]
Ma J, Li L, Wang H, Du Y, Ma J, Zhang X, et al.Carbon capture and storage: history and the road ahead.Engineering 2022; 14:33-43.
[10]
Li L, Khorsandi S, Johns RT, Dilmore RM.CO2 enhanced oil recovery and storage using a gravity-enhanced process.Int J Greenh Gas Con 2015; 42:502-515.
[11]
Zhao Y, Rui Z, Zhang Z, Chen S, Yang R, Du K, et al.Importance of conformance control in reinforcing synergy of CO2 EOR and sequestration.Petrol Sci 2022; 19(6):3088-3106.
[12]
Sun X, Bai B, Long Y, Wang Z.A comprehensive review of hydrogel performance under CO2 conditions for conformance control.J Petrol Sci Eng 2020; 185:106662.
[13]
Zhu D, Peng S, Zhao S, Wei M, Bai B.Comprehensive review of sealant materials for leakage remediation technology in geological CO2 capture and storage process.Energy Fuel 2021; 35(6):4711-4742.
[14]
Brattek Bås, Seright R.A review of polymer gel utilization in carbon dioxide flow control at the core and field scale.SPE J 2023; 28(6):3291-3307.
[15]
Van RDJ Vuuren, Naficy S, Ramezani M, Cunningham M, Jessop P.CO2-responsive gels.Chem Soc Rev 2023; 52:3470-3542.
[16]
Wang Z.Plugging performance of preformed particle gels in fractures and its influencing factors [dissertation]. Missouri University of Science and Technology, Rolla (2019)
[17]
Pu W, Du D, Fan H, Chen B, Yuan C, Varfolomeev MA.CO2-responsive preformed gel particles with interpenetrating networks for controlling CO2 breakthrough in tight reservoirs.Colloids Surf A 2021; 613:126065.
[18]
Du D, Zou B, Pu W, Wei X, Liu R.Injectivity and plugging characteristics of CO2-responsive gel particles for enhanced oil recovery in fractured ultra-low permeability reservoirs.J Petrol Sci Eng 2022; 214:110591.
[19]
Yang L, Zhan Y, Gong Y, Ren E, Lan J, Guo R, et al.Development of eco-friendly CO2-responsive cellulose nanofibril aerogels as “green” adsorbents for anionic dyes removal.J Hazard Mater 2021; 405:124194.
[20]
Yang L, Shang J, Dou B, Lan J, Zhang C, Zou R, et al.CO2-responsive functional cotton fibers decorated with Ag nanoparticles for “smart” selective and enhanced dye adsorption.J Hazard Mater 2022; 429:128327.
[21]
Yang L, Sun Y, Yu R, Huang P, Zhou Q, Yang H, et al.Urchin-like CO2-responsive magnetic microspheres for highly efficient organic dye removal.J Hazard Mate 2024; 469:134101.
[22]
Tian Q, Han P, Li B, Feng Y.Thermo‐ and CO2‐triggered swelling polymer microgels for reducing water‐cut during CO2 flooding.J Appl Polym Sci 2020; 137(4):48305.
[23]
Raj I, Liang T, Qu M, Xiao L, Hou J, Xian C.Preparation of CO2 responsive nanocellulose gel for mobility control in enhanced oil recovery.J Disper Sci Technol 2021; 42(13):2014-2021.
[24]
Zhang Y, Gao M, You Q, Fan H, Li W, Liu Y, et al.Smart mobility control agent for enhanced oil recovery during CO2 flooding in ultra-low permeability reservoirs.Fuel 2019; 241:442-450.
[25]
Ellis SN, Cunningham MF, Jessop PG.A forward osmosis hydrogel draw agent that responds to both heat and CO2.Desalination 2021; 510:115074.
[26]
Li D, Zhang L, Liu Y, Kang W, Ren S.CO2-triggered gelation for mobility control and channeling blocking during CO2 flooding processes.Petrol Sci 2016; 13:247-258.
[27]
Wu Y, Liu Q, Liu D, Cao XP, Yuan B, Zhao M.CO2 responsive expansion hydrogels with programmable swelling for in-depth CO2 conformance control in porous media.Fuel 2023; 332:126047.
[28]
Nguele R, Omondi BA, Yamasaki S, Mandai S, Sugai Y, Sasaki K.Evaluation of CO2-triggered and thermo-responsive gels for heterogeneous oil formations.Colloids Surf A 2021; 622:126688.
[29]
Wu D, Zou W, Quan H, Wei B, Yin H, Feng Y.Smart viscoelastic anion polyelectrolyte fluids “crosslinked” by CO2.J Mol Liq 2021; 325:114656.
[30]
Darabi A, Jessop PG, Cunningham MF.CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications.Chem Soc Rev 2015; 45(15):4391-4436.
[31]
Xiong C, Peng K, Tang X, Ye Z, Shi Y, Yang H.CO2-responsive self-healable hydrogels based on hydrophobically-modified polymers bridged by wormlike micelles.RSC Adv 2017; 7(55):34669-34675.
[32]
Roy SG, De P.PH responsive polymers with amino acids in the side chains and their potential applications.J Appl Polym Sci 2014; 131(20):41084.
[33]
I Yşıkver, Sarayd Dın.Smart hydrogels: preparation, characterization, and determination of transition points of crosslinked N-isopropyl acrylamide/acrylamide/carboxylic acids polymers.Gels 2021; 7(3):113.
[34]
Jiang B, Zhang Y, Huang X, Kang T, Severtson SJ, Wang WJ, et al.Tailoring CO2-responsive polymers and nanohybrids for green chemistry and processes.Ind Eng Chem Res 2019; 58(33):15088-15108.
[35]
Liu Y, Liu Q.Review of gel systems for CO2 geological storage leakage and conformance control for enhanced oil recovery: mechanisms, recent advances, and future perspectives.J Petrol Sci Eng 2022; 219:111110.
[36]
Gao M, Zhang M, Du H, Zhao M, Dai C, You Q, et al.A novel triple responsive smart fluid for tight oil fracturing-oil expulsion integration.Petrol Sci 2023; 20(2):982-992.
[37]
Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y.Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles.J Am Chem Soc 2012; 134(44):18177-18180.
[38]
Fang P, Zhang Q, Wu M, Zhou C, Yang Z, Yu H, et al.An intelligent CO2-responsive hydrogel for applications in enhanced oil recovery and CO2 geological storage.Sep Purif Technol 2025; 359:130526.
[39]
Wu D, Zhang Y, Huang J, Zhao X, Peng B, Liu W, et al.Cellulose-based irreversible hydrogels used for CO2 sequestration.ACS Sustain Chem Eng 2024; 12(20):7950-7963.
[40]
Zhang S, Zhang X, Shang W.Chemical investigation of potassium methyl siliconate as deacidification and strengthening agent for preservation of aged papers.Chin J Polym Sci 2015; 33(12):1672-1682.
[41]
Son D, Hwang H, Fontenot JF, Lee C, Jung JP, Kim M.Tailoring physical properties of dual-network acrylamide hydrogel composites by engineering molecular structures of the cross-linked network.ACS Omega 2022; 7(34):30028-30039.
[42]
Yi J, Nguyen KCT, Wang W, Yang W, Pan M, Lou E, et al.Polyacrylamide/alginate double-network tough hydrogels for intraoral ultrasound imaging.J Colloid Interf Sci 2020; 578:598-607.
[43]
Steinbrück N, Pohl S, Kickelbick G.Platinum free thermally curable siloxanes for optoelectronic application–synthesis and properties.RSC Adv 2019; 9(4):2205-2216.
[44]
Oh T, Choi CK.Comparison between SiOC thin films fabricated by using plasma enhance chemical vapor deposition and SiO2 thin films by using Fourier transform infrared spectroscopy.J Korean Phys Soc 2010; 56(4):1150-1155.
[45]
Vats V, Melton G, Islam M, Krishnan VV.FTIR spectroscopy as a convenient tool for detection and identification of airborne Cr(VI) compounds arising from arc welding fumes.J Hazard Mater 2023; 448:130862.
[46]
Li Y, Wang M, Tan X, An Y, Liu H, Gao K, et al.Application of hybrid silicate as a film-forming agent in high-temperature water-based drilling fluids.ACS Omega 2021; 6(31):20577-20589.
[47]
Smole MS, Nanofilled AKS.polypropylene fibres. Nanofibers and Nanotechnology in Textiles.Woodhead Publishing, Cambridge 2007; 281-297.
[48]
Romani M, Warscheid T, Nicole L, Marcon L, Di P Martino, Suzuki MT, et al.Current and future chemical treatments to fight biodeterioration of outdoor building materials and associated biofilms: moving away from ecotoxic and towards efficient, sustainable solutions.Sci Total Environ 2022; 802:149846.
[49]
Thomas DA, Sperling LH.Interpenetrating polymer networks.Polymer Blends, Academic Press, San Diego 1978; 1-33.
[50]
Du L, Xiao Y, Jiang Z, Zeng H, Li H.Towards in-depth profile control using dispersed particle gels (DPGs).Fuel 2023; 354:129419.
基金
 
PDF(4445 KB)

Accesses

Citation

Detail

段落导航
相关文章

/