基于学习的匹配博弈在意图驱动的任务导向型网络中的任务调度与资源协同

, , , ,

工程(英文) ›› 2025, Vol. 54 ›› Issue (11) : 143 -154.

PDF
工程(英文) ›› 2025, Vol. 54 ›› Issue (11) : 143 -154. DOI: 10.1016/j.eng.2025.07.033

基于学习的匹配博弈在意图驱动的任务导向型网络中的任务调度与资源协同

作者信息 +

Learning-Based Matching Game for Task Scheduling and Resource Collaboration in Intent-Driven Task-Oriented Networks

Author information +
文章历史 +
PDF

摘要

随着卫星通信技术的快速发展,空间信息网络(SINs)已成为支持复杂业务交付和跨域任务协同的重要基础设施,并推动着空间段、地面段、用户段多层协同向意图驱动的任务导向型协作范式转变。本文提出了一种新型意图驱动的任务导向型网络(IDTN)框架,以解决SIN中的任务调度与资源分配难题。该调度问题被建模为一种三方匹配博弈,综合考虑了各网络层实体的偏好属性。为了应对随机任务到达和资源动态变化带来的不确定性,框架引入了上下文感知的线性置信上界(Linear Upper Confidence Bound, LinUCB)在线学习机制,以降低决策不确定性。仿真结果表明,所提出的IDTN框架在性能上优于传统基准方法,实现了系统奖励平均提升4.4%–28.9%,资源利用率提升6.2%–34.5%,用户满意度提升5.6%–35.7%。该框架有望推动空间平台的深度集成与统一编排。

Abstract

With the rapid advancement of satellite communication technologies, space information networks (SINs) have become essential infrastructure for complex service delivery and cross-domain task coordination, facilitating the transition toward an intent-driven task-oriented coordination paradigm across the space, ground, and user segments. This study presents a novel intent-driven task-oriented network (IDTN) framework to address task scheduling and resource allocation challenges in SINs. The scheduling problem is formulated as a three-sided matching game that incorporates the preference attributes of entities across all network segments. To manage the variability of random task arrivals and dynamic resources, a context–aware linear upper-confidence-bound online learning mechanism is integrated to reduce decision-making uncertainty. Simulation results demonstrate the effectiveness of the proposed IDTN framework. Compared with conventional baseline methods, the framework achieves significant performance improvements, including a 4.4%–28.9% increase in average system reward, a 6.2%–34.5% improvement in resource utilization, and a 5.6%–35.7% enhancement in user satisfaction. The proposed framework is expected to facilitate the integration and orchestration of space-based platforms.

关键词

Key words

Intent-driven network / Matching game / Resource allocation / Space information network / Task scheduling

引用本文

引用格式 ▾
Jiaorui Huang,Min Cao,Chungang Yang,Zhu Han,Tong Li. 基于学习的匹配博弈在意图驱动的任务导向型网络中的任务调度与资源协同[J]. 工程(英文), 2025, 54(11): 143-154 DOI:10.1016/j.eng.2025.07.033

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

Supplementary files

supplementary data

72

访问

0

被引

详细

导航
相关文章

AI思维导图

/