
磁控螺旋形微纳米机器人在生物医学方面的应用
Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications
Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields (<10 mT). Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.
magnetic helical micro/nanorobots / mobile micro/nanorobots / artificial bacterial flagella (ABFs) / functionalization / biomedical applications
[1] |
B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng., 2010, 12(1): 55–85
|
[2] |
W. Gao, J. Wang. The environmental impact of micro/nanomachines: A review. ACS Nano, 2014, 8(4): 3170–3180
|
[3] |
L. Zhang, K. E. Peyer, B. J. Nelson. Artificial bacterial flagella for micromanipulation. Lab Chip, 2010, 10(17): 2203–2215
|
[4] |
J. J. Abbott,
|
[5] |
E. M. Purcell. Life at low Reynolds number. Am. J. Phys., 1977, 45(1): 3–11
|
[6] |
H. C. Berg, R. A. Anderson. Bacteria swim by rotating their flagellar filaments. Nature, 1973, 245(5425): 380–382
|
[7] |
T. Baba,
|
[8] |
W. R. DiLuzio,
|
[9] |
K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, B. J. Nelson. Magnetic helical micromachines. Chemi. Eur. J., 2013, 19(1): 28–38
|
[10] |
K. E. Peyer, L. Zhang, B. J. Nelson. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 2013, 5(4): 1259–1272
|
[11] |
T. Honda, K. I. Arai, K. Ishiyama. Micro swimming mechanisms propelled by external magnetic fields. IEEE Trans. Magn., 1996, 32(5): 5085–5087
|
[12] |
K. Kikuchi, A. Yamazaki, M. Sendoh, K. Ishiyama, K. I. Arai. Fabrication of a spiral type magnetic micromachine for trailing a wire. IEEE Trans. Magn., 2005, 41(10): 4012–4014
|
[13] |
D. J. Bell, S. Leutenegger, K. M. Hammar, L. X. Dong, B. J. Nelson. Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: Proceedings of IEEE International Conference on Robotics and Automation, 2007: 1128–1133
|
[14] |
A. Ghosh, P. Fischer. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett., 2009, 9(6): 2243–2245
|
[15] |
S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, B. J. Nelson. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater., 2012, 24(6): 811–816
|
[16] |
W. Gao,
|
[17] |
P. L. Venugopalan, R. Sai, Y. Chandorkar, B. Basu, S. Shivashankar, A. Ghosh. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett., 2014, 14(4): 1968–1975
|
[18] |
L. Zhang,
|
[19] |
B. J. Nelson, K. E. Peyer. Micro- and nanorobots swimming in heterogeneous liquids. ACS Nano, 2014, 8(9): 8718–8724
|
[20] |
F. Qiu,
|
[21] |
J. Li,
|
[22] |
D. Schamel,
|
[23] |
S. Schuerle, S. Pané, E. Pellicer, J. Sort, M. D. Baró, B. J. Nelson. Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small, 2012, 8(10): 1498–1502
|
[24] |
S. Kawata, H. B. Sun, T. Tanaka, K. Takada. Finer features for functional microdevices—Micromachines can be created with higher resolution using two-photon absorption. Nature, 2001, 412(6848): 697–698
|
[25] |
M. Suter,
|
[26] |
M. A. Zeeshan,
|
[27] |
T. Y. Huang,
|
[28] |
F. Qiu, R. Mhanna, L. Zhang, Y. Ding, S. Fujita, B. J. Nelson. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sens. Actuators B Chem., 2014, 196: 676–681
|
[29] |
R. Mhanna,
|
[30] |
F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, B. J. Nelson. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater., 2015, 25(11): 1666–1671
|
[31] |
A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B. J. Nelson. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater., 2015, 27(19): 2981–2988
|
/
〈 |
|
〉 |