
面向机器人微创手术的新型遥控柔性机器人
A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery
In this paper, a novel flexible robot system with a constrained tendon-driven serpentine manipulator (CTSM) is presented. The CTSM gives the robot a larger workspace, more dexterous manipulation, and controllable stiffness compared with the da Vinci surgical robot and traditional flexible robots. The robot is tele-operated using the Novint Falcon haptic device. Two control modes are implemented, direct mapping and incremental mode. In each mode, the robot can be manipulated using either the highest stiffness scheme or the minimal movement scheme. The advantages of the CTSM are shown by simulation and experimental results.
surgical robot / flexible manipulator / tendon-driven / minimally invasive robotic surgery
[1] |
H. Ren,
|
[2] |
Medgadget LLC. Intuitive’s new da Vinci Sp single port minimally invasive robotic system (VIDEO). 2014-<month>04</month>-<day>23</day>. http://www.medgadget.com/2014/04/intuitives-new-da-vinci-sp-single-port-minimally-invasive-robotic-system-video.html
|
[3] |
Z. Li, R. Du. Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int. J. Adv. Robot. Syst., 2013, 10: 1–9
|
[4] |
Z. Li, R. Du, M. C. Lei, S. M. Yuan. Design and analysis of a biomimetic wire-driven robot arm. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, 2011: 191–198
|
[5] |
K. Xu, J. Zhao, M. Fu. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE/ASME Trans. Mechatron., 2014(99): 1–13
|
[6] |
N. Simaan, R. Taylor, P. Flint. A dexterous system for laryngeal surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1. IEEE, 2004: 351–357
|
[7] |
J. Burgner,
|
[8] |
P. E. Dupont, J. Lock, B. Itkowitz, E. Butler. Design and control of concentric-tube robots. IEEE Trans. Robot., 2010, 26(2): 209–225
|
[9] |
G. Lum, S. Mustafa, H. Lim, W. Lim, G. Yang, S. Yeo. Design and motion control of a cable-driven dexterous robotic arm. In: Proceedings of IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT). IEEE, 2010: 106–111
|
[10] |
A. Degani, H. Choset, A. Wolf, M. A. Zenati. Highly articulated robotic probe for minimally invasive surgery. In: Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2006: 4167–4172
|
[11] |
Z. Li, R. Du. Expanding workspace of underactuated flexible manipulator by actively deploying constrains. In: Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2014: 2901–2906
|
[12] |
Z. Li, H. Yu, H. Ren. A novel underactuated wire-driven flexible robotic arm with controllable bending section length (abstract). In: ICRA 2014 Workshop on Advances in Flexible Robots for Surgical Interventions, 2014: 11
|
[13] |
Z. Li, R. Du, H. Yu, H. Ren. Statics modeling of an underactuated wire-driven flexible robotic arm. In: Proceedings of IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, 2014: 326–331
|
[14] |
Novint Falcon haptic device. [2014-<month>03</month>-<day>11</day>]. http://www.novint.com/index.php/novintfalcon
|
[15] |
J. Feiling, Z. Li, H. Ren, H. Yu. The constrained tendon-driven serpentine manipulator and its optimal control using novint falcon. In: The 28th Canadian Conference on Electrical and Computer Engineering, 2015 (in press)
|
[16] |
K. Klein, J. Neira. Nelder-Mead simplex optimization routine for large-scale problems: A distributed memory implementation. Comput. Econ., 2014, 43(4): 447–461
|
/
〈 |
|
〉 |