双金属电子束选区熔化的硬件开发与成形实验

工程(英文) ›› 2015, Vol. 1 ›› Issue (1) : 124-130.

PDF(9569 KB)
PDF(9569 KB)
工程(英文) ›› 2015, Vol. 1 ›› Issue (1) : 124-130. DOI: 10.15302/J-ENG-2015013
研究论文
Research

双金属电子束选区熔化的硬件开发与成形实验

作者信息 +

Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies

Author information +
History +

Abstract

Electron beam selective melting (EBSM) is an additive manufacturing technique that directly fabricates three-dimensional parts in a layerwise fashion by using an electron beam to scan and melt metal powder. In recent years, EBSM has been successfully used in the additive manufacturing of a variety of materials. Previous research focused on the EBSM process of a single material. In this study, a novel EBSM process capable of building a gradient structure with dual metal materials was developed, and a powder-supplying method based on vibration was put forward. Two different powders can be supplied individually and then mixed. Two materials were used in this study: Ti6Al4V powder and Ti47Al2Cr2Nb powder. Ti6Al4V has excellent strength and plasticity at room temperature, while Ti47Al2Cr2Nb has excellent performance at high temperature, but is very brittle. A Ti6Al4V/Ti47Al2Cr2Nb gradient material was successfully fabricated by the developed system. The microstructures and chemical compositions were characterized by optical microscopy, scanning microscopy, and electron microprobe analysis. Results showed that the interface thickness was about 300 μm. The interface was free of cracks, and the chemical compositions exhibited a staircase-like change within the interface.

Keywords

additive manufacturing / electron beam / selective melting / gradient materials / titanium alloy / TiAl alloy

引用本文

导出引用
. . Engineering. 2015, 1(1): 124-130 https://doi.org/10.15302/J-ENG-2015013

参考文献

[1]
Y. N. Yan, H. B. Qi, F. Lin, W. He, H. R. Zhang, R. J. Zhang. Produced three-dimensional metal parts by electron beam selective melting. Chin. J. Mech. Eng., 2007, 43(6): 87–92 (in Chinese)
[2]
D. Cormier, O. L. A. Harrysson, T. Mahale, H. A. West. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders. Adv. Mater. Sci. Eng., 2008, 2007: 6822–6825
[3]
L. E. Murr,  Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol., 2012, 28(1): 1–14
[4]
L. E. Murr,  Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting. Acta Mater., 2013, 61(11): 4289–4296
[5]
S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li, H. Matsumoto, A. Chiba. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater., 2014, 64: 154–168
[6]
Y. Chen, C. Zeng, M. Yan. Research process of Ti base functional gradient materials. Mater. Rev., 2012, 26(S1): 267–270 (in Chinese)
[7]
R. Banerjee, D. Bhattacharyya, P. C. Collins, G. B. Viswanathan, H. L. Fraser. Precipitation of grain boundary a in a laser deposited compositionally graded Ti-8Al-xV alloy—An orientation microscopy study. Acta Mater., 2004, 52(2): 377–385
[8]
H. Sahasrabudhe, R. Harrison, C. Carpenter, A. Bandyopadhyay. Stainless steel to titanium bimetallic structure using LENSTM. Addit. Manuf., 2015, 5: 1–8
[9]
Y. Liang, X. Tian, Y. Zhu, J. Li, H. Wang. Compositional variation and microstructural evolution in laser additive manufactured Ti/Ti-6Al-2Zr-1Mo-1V graded structural material. Mater. Sci. Eng. A, 2014, 599: 242–246
[10]
H. P. Qu, P. Li, S. Q. Zhang, A. Li, H. M. Wang. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material. Mater. Des., 2010, 31(1): 574–582
[11]
Z. H. Liu, D. Q. Zhang, S. L. Sing, C. K. Chua, L. E. Loh. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Mater. Charact., 2014, 94: 116–125
[12]
N. Hrabe, T. Quinn. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part si<?Pub Caret?>ze. Mater. Sci. Eng. A, 2013, 573: 264–270

Acknowledgements

The authors would like to acknowledge the funding of 2013 Beijing Science and Technology Development Project (D13110400300000 and D131100003013002).
Compliance with ethics guidelines
Chao Guo, Wenjun Ge, and Feng Lin declare that they have no conflict of interest or financial conflicts to disclose.
基金
2013年北京市科技计划(D13110400300000和D131100003013002)为本研究提供了经费支持,特此致谢。()
PDF(9569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/