
陶瓷喷墨打印增材制造技术
Additive Manufacture of Ceramics Components by Inkjet Printing
In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10−100 pL. In order to achieve this goal, stable ceramic inks must be developed. These inks should satisfy specific rheological conditions that can be illustrated within a parameter space defined by the Reynolds and Weber numbers. Printed drops initially deform on impact with a surface by dynamic dissipative processes, but then spread to an equilibrium shape defined by capillarity. We can identify the processes by which these drops interact to form linear features during printing, but there is a poorer level of understanding as to how 2D and 3D structures form. The stability of 2D sheets of ink appears to be possible over a more limited range of process conditions that is seen with the formation of lines. In most cases, the ink solidifies through evaporation and there is a need to control the drying process to eliminate the: “coffee ring” defect. Despite these uncertainties, there have been a large number of reports on the successful use of inkjet printing for the manufacture of small ceramic components from a number of different ceramics. This technique offers good prospects as a future manufacturing technique. This review identifies potential areas for future research to improve our understanding of this manufacturing method.
additive manufacture / 3D printing / inkjet printing / ceramic components
[1] |
E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Cornie. Three dimensional printing: Rapid tooling and prototypes directly from a CAD model. J. Manuf. Sci. Eng., 1992, 114(4): 481–488
|
[2] |
Q. F. Xiang, J. R. G. Evans, M. J. Edirisinghe, P. F. Blazdell. Solid freeforming of ceramics using a drop-on-demand jet printer. Proc. Inst. Mech. Eng. J. Eng. Manuf., 1997, 211(3): 211–214
|
[3] |
C. Ainsley, N. Reis, B. Derby. Freeform fabrication by controlled droplet deposition of powder filled melts. J. Mater. Sci., 2002, 37(15): 3155–3161
|
[4] |
M. Mott, J. R. G. Evans. Zirconia/alumina functionally graded material made by ceramic ink jet printing. Mater. Sci. Eng. A, 1999, 271(1¯2): 344–352
|
[5] |
B. Y. Tay, J. R. G. Evans, M. J. Edirisinghe. Solid freeform fabrication of ceramics. Int. Mater. Rev., 2003, 48(6): 341–370
|
[6] |
B. Derby, N. Reis. Inkjet printing of highly loaded particulate suspensions. MRS Bull., 2003, 28(11): 815–818
|
[7] |
B. Derby. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res., 2010, 40(1): 395–414
|
[8] |
B. Derby. Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc., 2011, 31(14): 2543–2550
|
[9] |
W. Thomson. Improvements in receiving or recording instruments for electric telegraphs. UK patent 2147, 1867−<month>7</month>−<day>23</day>
|
[10] |
R. Elmqvist. Measuring instrument of the recording type. USA patent US2566443 A, 1951−<month>9</month>−<day>4</day>
|
[11] |
T. Shimoda, K. Morii, S. Seki, H. Kiguchi. Inkjet printing of light-emitting polymer displays. MRS Bull., 2003, 28(11): 821–827
|
[12] |
J. Perelaer,
|
[13] |
K. A. M. Seerden, N. Reis, J. R. G. Evans, P. S. Grant, J. W. Halloran, B. Derby. Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc., 2001, 84(11): 2514–2520
|
[14] |
B. Derby. Printing and prototyping of tissues and scaffolds. Science, 2012, 338(6109): 921–926
|
[15] |
P. F. Blazdell, J. R. G. Evans. Application of a continuous ink jet printer to solid freeforming of ceramics. J. Mater. Process. Technol., 2000, 99(1¯3): 94–102
|
[16] |
G. D. Martin, S. D. Hoath, I. M. Hutchings. Inkjet printing—The physics of manipulating liquid jets and drops. J. Phys. Conf. Ser., 2008, 105(1): 012001
|
[17] |
S. Umezu, H. Suzuki, H. Kawamoto. Droplet formation and diropping position control in electrostatic inkjet phenomena. In: IS&T’S NIP21: International Conference on Digital Printing Technologies, Final Program and Proceedings, 2005: 283–286
|
[18] |
C. E. Slade, J. R. G. Evans. Freeforming ceramics using a thermal jet printer. J. Mater. Sci. Lett., 1998, 17(19): 1669–1671
|
[19] |
M. Mott, J. H. Song, J. R. G. Evans. Microengineering of ceramics by direct ink-jet printing. J. Am. Ceram. Soc., 1999, 82(7): 1653–1658
|
[20] |
J. Windle, B. Derby. Ink jet printing of PZT aqueous ceramic suspensions. J. Mater. Sci. Lett., 1999, 18(2): 87–90
|
[21] |
P. Smith, B. Derby, N. Reis, A. Wallwork, C. Ainsley. Measured anisotropy of alumina components produced by direct ink-jet printing. Key Eng. Mater., 2004, 264¯268: 693–696
|
[22] |
T. M. Wang, B. Derby. Ink-jet printing and sintering of PZT. J. Am. Ceram. Soc., 2005, 88(8): 2053–2058
|
[23] |
R. Noguera, M. Lejeune, T. Chartier. 3D fine scale ceramic components formed by ink-jet prototyping process. J. Eur. Ceram. Soc., 2005, 25(12): 2055–2059
|
[24] |
B. Cappi, E. Özkol, J. Ebert, R. Telle. Direct inkjet printing of Si3N4: Characterization of ink, green bodies and microstructure. J. Eur. Ceram. Soc., 2008, 28(13): 2625–2628
|
[25] |
E. Özkol, J. Ebert, K. Uibel, A. M. Wätjen, R. Telle. Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet printing using a thermal inkjet printer. J. Eur. Ceram. Soc., 2009, 29(3): 403–409
|
[26] |
J. E. Fromm. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Develop., 1984, 28(3): 322–333
|
[27] |
N. Reis, B. Derby. Ink jet deposition of ceramic suspensions: Modeling and experiments of droplet Formation. In: S. C. Danforth, D. B. Dimos, F. Prinz, eds. Solid Freeform and Additive Fabrication, 2000: 117–122
|
[28] |
B. W. Jo, A. Lee, K. H. Ahn, S. J. Lee. Evaluation of jet performance in drop-on-demand (DOD) inkjet printing. Korean J. Chem. Eng., 2009, 26(2): 339–348
|
[29] |
D. Jang, D. Kim, J. Moon. Influence of fluid physical properties on ink-jet printability. Langmuir, 2009, 25(5): 2629–2635
|
[30] |
P. C. Duineveld,
|
[31] |
C. D. Stow, M. G. Hadfield. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A Math. Phys. Sci., 1981, 373(1755): 419–441
|
[32] |
R. Bhola, S. Chandra. Parameters controlling solidification of molten wax droplets falling on a solid surface. J. Mater. Sci., 1999, 34(19): 4883–4894
|
[33] |
E. I. Haskal,
|
[34] |
D. Xu,
|
[35] |
B. V. Antohe, D. B. Wallace. Acoustic phenomena in a demand mode piezoelectric ink jet printer. J. Imaging Sci. Technol., 2002, 46(5): 409–414
|
[36] |
N. Reis, C. Ainsley, B. Derby. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys., 2005, 97(9): 094903
|
[37] |
N. Reis, C. Ainsley, B. Derby. Viscosity and acoustic behavior of ceramic suspensions optimized for phase-change ink-jet printing. J. Am. Ceram. Soc., 2005, 88(4): 802–808
|
[38] |
A. L. Yarin. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192
|
[39] |
S. H. Davis. Moving contact lines and rivulet instabilities. Part 1. The static rivulet. J. Fluid Mech., 1980, 98(2): 225–242
|
[40] |
S. Schiaffino, A. A. Sonin. Formation and stability of liquid and molten beads on a solid surface. J. Fluid Mech., 1997, 343: 95–110
|
[41] |
D. Soltman, V. Subramanian. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir, 2008, 24(5): 2224–2231
|
[42] |
P. J. Smith, D. Y. Shin, J. E. Stringer, B. Derby, N. Reis. Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci., 2006, 41(13): 4153–4158
|
[43] |
J. Stringer, B. Derby. Limits to feature size and resolution in ink jet printing. J. Eur. Ceram. Soc., 2009, 29(5): 913–918
|
[44] |
J. Stringer, B. Derby. Formation and stability of lines produced by inkjet printing. Langmuir, 2010, 26(12): 10365–10372
|
[45] |
P. C. Duineveld. The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J. Fluid Mech., 2003, 477: 175–200
|
[46] |
R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829
|
[47] |
R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten. Contact line deposits in an evaporating drop. Phys. Rev. E., 2000, 62(1): 756–765
|
[48] |
R. Dou, T. Wang, Y. Guo, B. Derby. Inkjet printing of zirconia: Coffee staining and line stability. J. Am. Ceram. Soc., 2011, 94(11): 3787–3792
|
[49] |
B. J. de Gans, U. S. Schubert. Inkjet printing of well-defined polymer dots and arrays. Langmuir, 2004, 20(18): 7789–7793
|
[50] |
Y. Zhang, S. Yang, L. Chen, J. R. G. Evans. Shape changes during the drying of droplets of suspensions. Langmuir, 2008, 24(8): 3752–3758
|
[51] |
H. Hu, R. G. Larson. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 2005, 21(9): 3972–3980
|
[52] |
M. Di Biase, R. E. Saunders, N. Tirelli, B. Derby. Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter, 2011, 7: 2639–2646
|
[53] |
E. Tekin, B. J. de Gans, U. S. Schubert. Ink-jet printing of polymers—From single dots to thin film libraries. J. Mater. Chem., 2004, 14(17): 2627–2632
|
[54] |
H. Kang, D. Soltman, V. Subramanian. Hydrostatic optimization of inkjet-printed films. Langmuir, 2010, 26(13): 11568–11573
|
[55] |
D. Soltman, B. Smith, H. Kang, S. J. S. Morris, V. Subramanian, Methodology for inkjet printing of partially wetting films. Langmuir, 2010, 26: 15686–15693
|
[56] |
R. Dou, B. Derby. Formation of coffee stains on porous surfaces. Langmuir, 2012, 28(12): 5331–5338
|
[57] |
I. M. Hutchings. Ink-jet printing for the decoration of ceramic tiles: technology and opportunities. In: Qualicer '10, 11th World Congress on Ceramic Tile Quality. Castellon, Spain, 2010
|
[58] |
R. van Noort. The future of dental devices is digital. Dental Materials, 2012, 28: 3–12
|
[59] |
J. Ebert,
|
/
〈 |
|
〉 |