组织工程和给药技术中的三维光制造

工程(英文) ›› 2015, Vol. 1 ›› Issue (1) : 90-112.

PDF(13414 KB)
PDF(13414 KB)
工程(英文) ›› 2015, Vol. 1 ›› Issue (1) : 90-112. DOI: 10.15302/J-ENG-2015015
研究论文
Research

组织工程和给药技术中的三维光制造

作者信息 +

3D Photo-Fabrication for Tissue Engineering and Drug Delivery

Author information +
History +

Abstract

The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.

Keywords

3D photo-fabrication / biomaterials / tissue engineering / drug delivery

引用本文

导出引用
. . Engineering. 2015, 1(1): 90-112 https://doi.org/10.15302/J-ENG-2015015

参考文献

[1]
F. P. W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci., 2012, 37(8): 1079–1104
[2]
A. Ranga, M. P. Lutolf. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr. Opin. Cell Biol., 2012, 24(2): 236–244
[3]
A. Khademhosseini, R. Langer, J. Borenstein, J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A., 2006, 103(8): 2480–2487
[4]
R. S. Tuan, G. Boland, R. Tuli. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther., 2003, 5(1): 32–45
[5]
D. J. Newman, G. M. Cragg. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3): 311–335
[6]
P. X. Ma. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev., 2008, 60(2): 184–198
[7]
R. F. Pereira, C. C. Barrias, P. L. Granja, P. J. Bartolo. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond), 2013, 8(4): 603–621
[8]
R. Passier, L. W. van Laake, C. L. Mummery. Stem-cell-based therapy and lessons from the heart. Nature, 2008, 453(7193): 322–329
[9]
R. S. Kirsner, W. A. Marston, R. J. Snyder, T. D. Lee, D. I. Cargill, H. B. Slade. Spray-applied cell therapy with human allogeneic fibroblasts and keratinocytes for the treatment of chronic venous leg ulcers: A phase 2, multicentre, double-blind, randomised, placebo-controlled trial. Lancet, 2012, 380(9846): 977–985
[10]
P. J. Bártolo, C. K. Chua, H. A. Almeida, S. M. Chou, A. S. C. Lim. Biomanufacturing for tissue engineering: Present and future trends. Virtual Phys. Prototyp., 2009, 4(4): 203–216
[11]
D. W. Hutmacher. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21(24): 2529–2543
[12]
D. Puppi, F. Chiellini, A. M. Piras, E. Chiellini. Polymeric materials for bone and cartilage repair. Prog. Polym. Sci., 2010, 35(4): 403–440
[13]
H. Cao, N. Kuboyama. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone, 2010, 46(2): 386–395
[14]
N. T. Khanarian, N. M. Haney, R. A. Burga, H. H. Lu. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials, 2012, 33(21): 5247–5258
[15]
F. P. W. Melchels,  The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials, 2011, 32(11): 2878–2884
[16]
J. W. Lee, K. S. Kang, S. H. Lee, J. Y. Kim, B. K. Lee, D. W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials, 2011, 32(3): 744–752
[17]
K. Kim, D. Dean, J. Wallace, R. Breithaupt, A. G. Mikos, J. P. Fisher. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials, 2011, 32(15): 3750–3763
[18]
P. Bajaj, R. M. Schweller, A. Khademhosseini, J. L. West, R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng., 2014, 16(1): 247–276
[19]
R. F. Pereira, P. J. Bártolo. Recent advances in additive biomanufacturing. In: S. H. Masood, ed. Comprehensive Materials Processing, Volume 10: Advances in Additive Manufacturing and Tooling. Oxford: Elsevier, 2014: 265–284
[20]
V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald. Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30(12): 2164–2174
[21]
J. W. Nichol, A. Khademhosseini. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter, 2009, 5(7): 1312–1319
[22]
S. V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8): 773–785
[23]
Y. B. Lee,  Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol., 2010, 223(2): 645–652
[24]
M. P. Lutolf. Materials science: Cell environments programmed with light. Nature, 2012, 482(7386): 477–478
[25]
K. T. Nguyen, J. L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002, 23(22): 4307–4314
[26]
I. Mironi-Harpaz, D. Y. Wang, S. Venkatraman, D. Seliktar. Photopolymerization of cell-encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity. Acta Biomater., 2012, 8(5): 1838–1848
[27]
C. A. DeForest, B. D. Polizzotti, K. S. Anseth. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater., 2009, 8(8): 659–664
[28]
K. A. Mosiewicz,  In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater., 2013, 12(11): 1072–1078
[29]
R. F. Pereira, P. J. Bártolo. Photopolymerizable hydrogels in regenerative medicine and drug delivery. In: Hot Topics in Biomaterials. London: Future Science Ltd., 2014: 6–28
[30]
M. A. Azagarsamy, K. S. Anseth. Bioorthogonal click chemistry: An indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett., 2013, 2(1): 5–9
[31]
M. K. Nguyen, E. Alsberg. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci., 2014, 39(7): 1235–1265
[32]
K. M. C. Tsang,  Facile one-step micropatterning using photodegradable gelatin hydrogels for improved cardiomyocyte organization and alignment. Adv. Funct. Mater., 2015, 25(6): 977–986
[33]
F. Guillemot,  High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater., 2010, 6(7): 2494–2500
[34]
C. C. Lin, C. S. Ki, H. Shih. Thiol-norbornene photo-click hydrogels for tissue engineering applications. J. Appl. Polym. Sci., 2015, 132(8): 41563
[35]
N. Annabi,  25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 2014, 26(1): 85–124
[36]
S. B. Anderson, C. C. Lin, D. V. Kuntzler, K. S. Anseth. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials, 2011, 32(14): 3564–3574
[37]
F. R. Maia, K. B. Fonseca, G. Rodrigues, P. L. Granja, C. C. Barrias. Matrix-driven formation of mesenchymal stem cell-extracellular matrix microtissues on soft alginate hydrogels. Acta Biomater., 2014, 10(7): 3197–3208
[38]
M. W. Tibbitt, A. M. Kloxin, L. Sawicki, K. S. Anseth. Mechanical properties and degradation of chain and step polymerized photodegradable hydrogels. Macromolecules, 2013, 46(7): 2785–2792
[39]
C. E. Hoyle, C. N. Bowman. Thiol-ene click chemistry. Angew. Chem. Int. Ed. Engl., 2010, 49(9): 1540–1573
[40]
Y. Jiang, J. Chen, C. Deng, E. J. Suuronen, Z. Zhong. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18): 4969–4985
[41]
M. A. Tasdelen, Y. Yagci. Light-induced click reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(23): 5930–5938
[42]
K. A. Kyburz, K. S. Anseth. Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density. Acta Biomater., 2013, 9(5): 6381–6392
[43]
H. Shih, C. C. Lin. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol. Rapid Commun., 2013, 34(3): 269–273
[44]
B. D. Fairbanks, M. P. Schwartz, A. E. Halevi, C. R. Nuttelman, C. N. Bowman, K. S. Anseth. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater., 2009, 21(48): 5005–5010
[45]
P. J. Bártolo. Stereolithographic processes. In: P. J. Bártolo, ed. Stereolithography. New York: Springer US, 2011: 1–36
[46]
N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, W. J. Dhert. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, 2009, 30(3): 344–353
[47]
A. D. Rouillard,  Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng. Part C Methods, 2011, 17(2): 173–179
[48]
S. J. Bryant, C. R. Nuttelman, K. S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed., 2000, 11(5): 439–457
[49]
C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, J. H. Elisseeff. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 2005, 26(11): 1211–1218
[50]
T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35(1): 49–62
[51]
B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, K. S. Anseth. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility. Biomaterials, 2009, 30(35): 6702–6707
[52]
Z. Li,  Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels. RSC Adv., 2013, 3(36): 15939–15946
[53]
J. Hu,  Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater., 2012, 8(5): 1730–1738
[54]
J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31(21): 5536–5544
[55]
W. M. Gramlich, I. L. Kim, J. A. Burdick. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials, 2013, 34(38): 9803–9811
[56]
A. Fu, K. Gwon, M. Kim, G. Tae, J. A. Kornfield. Visible-light-initiated thiol-acrylate photopolymerization of heparin-based hydrogels. Biomacromolecules, 2015, 16(2): 497–506
[57]
A. K. Nguyen,  Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen. Med., 2013, 8(6): 725–738
[58]
H. Park, B. Choi, J. Hu, M. Lee. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater., 2013, 9(1): 4779–4786
[59]
P. M. Kharkar, K. L. Kiick, A. M. Kloxin. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev., 2013, 42(17): 7335–7372
[60]
J. A. Yang, J. Yeom, B. W. Hwang, A. S. Hoffman, S. K. Hahn. In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci., 2014, 39(12): 1973–1986
[61]
M. P. Lutolf, J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol., 2005, 23(1): 47–55
[62]
L. Fertier,  The use of renewable feedstock in UV-curable materials–A new age for polymers and green chemistry. Prog. Polym. Sci., 2013, 38(6): 932–962
[63]
C. Heller,  Vinylcarbonates and vinylcarbamates: Biocompatible monomers for radical photopolymerization. J. Polym. Sci. A Polym. Chem., 2011, 49(3): 650–661
[64]
B. Husár, R. Liska. Vinyl carbonates, vinyl carbamates, and related monomers: Synthesis, polymerization, and application. Chem. Soc. Rev., 2012, 41(6): 2395–2405
[65]
C. Heller, M. Schwentenwein, G. Russmueller, F. Varga, J. Stampfl, R. Liska. Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J. Polym. Sci. A Polym. Chem., 2009, 47(24): 6941–6954
[66]
J. F. Almeida, P. Ferreira, A. Lopes, M. H. Gil. Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int. J. Biol. Macromol., 2011, 49(5): 948–954
[67]
O. Jeon, C. Powell, L. D. Solorio, M. D. Krebs, E. Alsberg. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release, 2011, 154(3): 258–266
[68]
S. Sahoo, C. Chung, S. Khetan, J. A. Burdick. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules, 2008, 9(4): 1088–1092
[69]
S. A. Bencherif, A. Srinivasan, F. Horkay, J. O. Hollinger, K. Matyjaszewski, N. R. Washburn. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials, 2008, 29(12): 1739–1749
[70]
C. S. Ki, H. Shih, C. C. Lin. Facile preparation of photodegradable hydrogels by photopolymerization. Polymer (Guildf.), 2013, 54(8): 2115–2122
[71]
Q. Guo, X. Wang, M. W. Tibbitt, K. S. Anseth, D. J. Montell, J. H. Elisseeff. Light activated cell migration in synthetic extracellular matrices. Biomaterials, 2012, 33(32): 8040–8046
[72]
M. A. Azagarsamy, D. D. McKinnon, D. L. Alge, K. S. Anseth. Coumarin-based photodegradable hydrogel: Design, synthesis, gelation, and degradation kinetics. ACS Macro Letters, 2014, 3(6): 515–519
[73]
M. A. Azagarsamy, K. S. Anseth. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. Engl., 2013, 52(51): 13803–13807
[74]
N. Annabi, S. M. Mithieux, P. Zorlutuna, G. Camci-Unal, A. S. Weiss, A. Khademhosseini. Engineered cell-laden human protein-based elastomer. Biomaterials, 2013, 34(22): 5496–5505
[75]
M. S. Bae,  Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials, 2011, 32(32): 8161–8171
[76]
H. Zhang,  Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules, 2013, 14(5): 1299–1310
[77]
Z. Mũnoz, H. Shih, C. C. Lin. Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation. Biomaterials Science, 2014, 2(8): 1063–1072
[78]
K. Peng,  Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7(10): 4881–4887
[79]
R. F. Pereira, H. A. Almeida, P. J. Bártolo. Biofabrication of hydrogel constructs. In: J. Coelho, ed. Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Dordrecht: Springer Netherlands, 2013: 225–254
[80]
N. R. Schiele, D. T. Corr, Y. Huang, N. A. Raof, Y. Xie, D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication, 2010, 2(3): 032001
[81]
F. P. W. Melchels, J. Feijen, D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121–6130
[82]
R. F. Pereira, P. J. Bártolo. Photocrosslinkable materials for the fabrication of tissue-engineered constructs by stereolithography. In: P. R. Fernandes, P. J. Bártolo, eds. Tissue Engineering. Dordrecht: Springer Netherlands, 2014: 149–178
[83]
J. W. Choi, R. Wicker, S. H. Lee, K. H. Choi, C. S. Ha, I. Chung. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J. Mater. Process. Technol., 2009, 209(15−16): 5494–5503
[84]
J. Torgersen, X. H. Qin, Z. Li, A. Ovsianikov, R. Liska, J. Stampfl. Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. Adv. Funct. Mater., 2013, 23(36): 4542–4554
[85]
P. J. Bártolo, G. Mitchell. Stereo-thermal-lithography: A new principle for rapid prototyping. Rapid Prototyping J., 2003, 9(3): 150–156
[86]
T. Patrício, R. Pereira, L. Oliveira, P. Bártolo. Polyethylene glycol and polyethylene glycol/hydroxyapatite constructs produced through stereo-thermal lithography. Adv. Mater. Res., 2013, 749: 87–92
[87]
P. Bartolo,  Biomedical production of implants by additive electro-chemical and physical processes. CIRP Annals—Manuf. Technol., 2012, 61(2): 635–655
[88]
Y. J. Seol, D. Y. Park, J. Y. Park, S. W. Kim, S. J. Park, D. W. Cho. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol. Bioeng., 2013, 110(5): 1444–1455
[89]
J. R. Tumbleston,  Continuous liquid interface production of 3D objects. Science, 2015, 347(6228), 1349–1352
[90]
S. J. Leigh,  Fabrication of 3-dimensional cellular constructs via microstereolithography using a simple, three-component, poly(ethylene glycol) acrylate-based system. Biomacromolecules, 2013, 14(1): 186–192
[91]
A. P. Zhang,  Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater., 2012, 24(31): 4266–4270
[92]
A. Ovsianikov,  Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules, 2011, 12(4): 851–858
[93]
K. W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, L. Lu. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: Effects of resin formulations and laser parameters. Biomacromolecules, 2007, 8(4): 1077–1084
[94]
L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. W. Grijpma, J. V. Seppälä. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater., 2011, 7(11): 3850–3856
[95]
F. P. W. Melchels, J. Feijen, D. W. Grijpma. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 2009, 30(23−24): 3801–3809
[96]
S. Schüller-Ravoo, S. M. Teixeira, J. Feijen, D. W. Grijpma, A. A. Poot. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol. Biosci., 2013, 13(12): 1711–1719
[97]
J. W. Lee, P. X. Lan, B. Kim, G. Lim, D. W. Cho. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 87B(1): 1–9
[98]
J. Jansen, F. P. Melchels, D. W. Grijpma, J. Feijen. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules, 2009, 10(2): 214–220
[99]
T. M. Seck, F. P. Melchels, J. Feijen, D. W. Grijpma. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins. J. Control. Release, 2010, 148(1): 34–41
[100]
K. Arcaute, B. Mann, R. Wicker. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater., 2010, 6(3): 1047–1054
[101]
F. A. M. M. Gonçalves,  3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithography. Biofabrication, 2014, 6(3): 035024
[102]
M. Dadsetan,  Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater., 2015 (in press)
[103]
J. H. Shin, J. W. Lee, J. H. Jung, D. W. Cho, G. Lim. Evaluation of cell proliferation and differentiation on a poly(propylene fumarate) 3D scaffold treated with functional peptides. J. Mater. Sci., 2011, 46(15): 5282–5287
[104]
L. Elomaa, Y. Kang, J. V. Seppälä, Y. Yang. Biodegradable photocrosslinkable poly(depsipeptide-co-ε-caprolactone) for tissue engineering: Synthesis, characterization, and in vitro evaluation. J. Polym. Sci. A Polym. Chem., 2014, 52(23): 3307–3315
[105]
R. Gauvin,  Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012, 33(15): 3824–3834
[106]
F. Scalera, C. Esposito Corcione, F. Montagna, A. Sannino, A. Maffezzoli. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceram. Int., 2014, 40(10, Part A): 15455–15462
[107]
L. Elomaa, A. Kokkari, T. Närhi, J. V. Seppälä. Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos. Sci. Technol., 2013, 74: 99–106
[108]
A. Ronca, L. Ambrosio, D. W. Grijpma. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater., 2013, 9(4): 5989–5996
[109]
F. Claeyssens,  Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir, 2009, 25(5): 3219–3223
[110]
O. Kufelt, A. El-Tamer, C. Sehring, S. Schlie-Wolter, B. N. Chichkov. Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules, 2014, 15(2): 650–659
[111]
V. Melissinaki,  Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication, 2011, 3(4): 045005
[112]
M. T. Raimondi,  Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater., 2013, 9(1): 4579–4584
[113]
J. W. Lee, K. J. Kim, K. S. Kang, S. Chen, J. W. Rhie, D. W. Cho. Development of a bone reconstruction technique using a solid free-form fabrication (SFF)-based drug releasing scaffold and adipose-derived stem cells. J. Biomed. Mater. Res. A, 2013, 101A(7): 1865–1875
[114]
J. Jansen, M. J. Boerakker, J. Heuts, J. Feijen, D. W. Grijpma. Rapid photo-crosslinking of fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers for drug delivery applications. J. Control. Release, 2010, 147(1): 54–61
[115]
S. D. Gittard,  Two photon polymerization-micromolding of polyethylene glycol-gentamicin sulfate microneedles. Adv. Eng. Mater., 2010, 12(4): B77–B82
[116]
S. D. Gittard,  Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. JOM, 2011, 63(6): 59–68
[117]
Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A, 2006, 77A(2): 396–405
[118]
P. Zorlutuna, J. H. Jeong, H. Kong, R. Bashir. Stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv. Funct. Mater., 2011, 21(19): 3642–3651
[119]
V. Chan, P. Zorlutuna, J. H. Jeong, H. Kong, R. Bashir. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip, 2010, 10(16): 2062–2070
[120]
H. Lin,  Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 2013, 34(2): 331–339
[121]
A. Ovsianikov,  Laser photofabrication of cell-containing hydrogel constructs. Langmuir, 2014, 30(13): 3787–3794
[122]
A. Ovsianikov,  Laser printing of cells into 3D scaffolds. Biofabrication, 2010, 2(1): 014104
[123]
Y. Nahmias, D. J. Odde. Micropatterning of living cells by laser-guided direct writing: Application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc., 2006, 1(5): 2288–2296
[124]
B. R. Ringeisen, C. M. Othon, J. A. Barron, P. K. Wu, B. J. Spargo. The evolution of cell printing. In: U. Meyer, J. Handschel, H. P. Wiesmann, T. Meyer, eds. Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin: Springer Berlin Heidelberg, 2009: 613–631
[125]
D. J. Odde, M. J. Renn. Laser-guided direct writing of living cells. Biotechnol. Bioeng., 2000, 67(3): 312–318
[126]
Y. Nahmias, R. E. Schwartz, C. M. Verfaillie, D. J. Odde. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng., 2005, 92(2): 129–136
[127]
F. Guillemot, A. Souquet, S. Catros, B. Guillotin. Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond), 2010, 5(3): 507–515
[128]
S. Catros, B. Guillotin, M. Bačáková, J. C. Fricain, F. Guillemot. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Appl. Surf. Sci., 2011, 257(12): 5142–5147
[129]
J. A. Barron, D. B. Krizman, B. R. Ringeisen. Laser printing of single cells: Statistical analysis, cell viability, and stress. Ann. Biomed. Eng., 2005, 33(2): 121–130
[130]
Y. Lin, G. Huang, Y. Huang, T. R. Jeremy Tzeng, D. Chrisey. Effect of laser fluence in laser-assisted direct writing of human colon cancer cell. Rapid Prototyping J., 2010, 16(3): 202–208
[131]
B. C. Riggs,  Matrix-assisted pulsed laser methods for biofabrication. MRS Bull., 2011, 36(12): 1043–1050
[132]
N. A. Raof, N. R. Schiele, Y. Xie, D. B. Chrisey, D. T. Corr. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials, 2011, 32(7): 1802–1808
[133]
J. A. Barron, B. R. Ringeisen, H. Kim, B. J. Spargo, D. B. Chrisey. Application of laser printing to mammalian cells. Thin Solid Films, 2004, 453−454: 383–387
[134]
T. M. Patz,  Three-dimensional direct writing of B35 neuronal cells. J. Biomed. Mater. Res. B Appl. Biomater., 2006, 78B(1): 124–130
[135]
N. R. Schiele, D. B. Chrisey, D. T. Corr. Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng. Part C Methods, 2011, 17(3): 289–298
[136]
N. R. Schiele,  Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications. Appl. Surf. Sci., 2009, 255(10): 5444–5447
[137]
A. Doraiswamy, R. J. Narayan, M. L. Harris, S. B. Qadri, R. Modi, D. B. Chrisey. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J. Biomed. Mater. Res. A, 2007, 80A(3): 635–643
[138]
S. Catros,  Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 2011, 3(2): 025001
[139]
M. Gruene,  Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng. Part C Methods, 2011, 17(10): 973–982
[140]
L. Koch,  Skin tissue generation by laser cell printing. Biotechnol. Bioeng., 2012, 109(7): 1855–1863
[141]
P. K. Wu, B. R. Ringeisen. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication, 2010, 2(1): 014111
[142]
S. Michael,  Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE, 2013, 8(3): e57741
[143]
V. Keriquel,  In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication, 2010, 2(1): 014101
[144]
B. Guillotin,  Laser-assisted bioprinting for tissue engineering. In: G. Forgacs, W. Sun, eds. Biofabrication. Boston: William Andrew Publishing, 2013: 95–118
[145]
R. G. Wylie, S. Ahsan, Y. Aizawa, K. L. Maxwell, C. M. Morshead, M. S. Shoichet. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater., 2011, 10(10): 799–806
[146]
R. G. Wylie, M. S. Shoichet. Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules, 2011, 12(10): 3789–3796
[147]
S. H. Lee, J. J. Moon, J. L. West. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials, 2008, 29(20): 2962–2968
[148]
S. C. Owen, S. A. Fisher, R. Y. Tam, C. M. Nimmo, M. S. Shoichet. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir, 2013, 29(24): 7393–7400
[149]
K. A. Mosiewicz, L. Kolb, A. J. van der Vlies, M. P. Lutolf. Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater. Sci., 2014, 2(11): 1640–1651
[150]
A. T. Alsop, J. C. Pence, D. W. Weisgerber, B. A. Harley, R. C. Bailey. Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomater., 2014, 10(11): 4715–4722
[151]
R. J. Wade, E. J. Bassin, W. M. Gramlich, J. A. Burdick. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater., 2015, 27(8): 1356–1362
[152]
H. J. Lee, W. G. Koh. Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs. ACS Appl. Mater. Interfaces, 2014, 6(12): 9338–9348
[153]
B. V. Sridhar, N. R. Doyle, M. A. Randolph, K. S. Anseth. Covalently tethered TGF-b1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J. Biomed. Mater. Res. A, 2014, 102(12): 4464–4472
[154]
G. Pasparakis, T. Manouras, P. Argitis, M. Vamvakaki. Photodegradable polymers for biotechnological applications. Macromol. Rapid Commun., 2012, 33(3): 183–198
[155]
M. T. Frey, Y. L. Wang. A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter, 2009, 5(9): 1918–1924
[156]
V. V. Ramanan, J. S. Katz, M. Guvendiren, E. R. Cohen, R. A. Marklein, J. A. Burdick. Photocleavable side groups to spatially alter hydrogel properties and cellular interactions. J. Mater. Chem., 2010, 20(40): 8920–8926
[157]
D. R. Griffin, A. M. Kasko. Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc., 2012, 134(31): 13103–13107
[158]
D. R. Griffin, J. T. Patterson, A. M. Kasko. Photodegradation as a mechanism for controlled drug delivery. Biotechnol. Bioeng., 2010, 107(6): 1012–1019
[159]
M. He, J. Li, S. Tan, R. Wang, Y. Zhang. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc., 2013, 135(50): 18718–18721
[160]
C. A. DeForest, K. S. Anseth. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem., 2011, 3(12): 925–931
[161]
A. M. Kloxin, J. A. Benton, K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials, 2010, 31(1): 1–8
[162]
C. M. Kirschner, D. L. Alge, S. T. Gould, K. S. Anseth. Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv. Healthc. Mater., 2014, 3(5): 649–657
[163]
M. V. Tsurkan,  Photopatterning of multifunctional hydrogels to direct adult neural precursor cells. Adv. Healthc. Mater., 2015, 4(4): 516–521
[164]
M. A. Azagarsamy, D. L. Alge, S. J. Radhakrishnan, M. W. Tibbitt, K. S. Anseth. Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules, 2012, 13(8): 2219–2224
[165]
M. W. Tibbitt, B. W. Han, A. M. Kloxin, K. S. Anseth. Synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J. Biomed. Mater. Res. A, 2012, 100A(7): 1647–1654
[166]
C. Lv, Z. Wang, P. Wang, X. Tang. Photodegradable polyurethane self-assembled nanoparticles for photocontrollable release. Langmuir, 2012, 28(25): 9387–9394
[167]
J. L. Vivero-Escoto, I. I. Slowing, C. W. Wu, V. S. Lin. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc., 2009, 131(10): 3462–3463
[168]
Q. Jin, F. Mitschang, S. Agarwal. Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules, 2011, 12(10): 3684–3691
[169]
B. Yan, J. C. Boyer, D. Habault, N. R. Branda, Y. Zhao. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc., 2012, 134(40): 16558–16561

Acknowledgements

The authors thank the support of the Portuguese Foundation for Science and Technology (FCT) through the strategic project UID/Multi/04044/2013. Ruben F. Pereira is grateful to the FCT for the doctoral grant SFRH/BD/91151/2012.
Compliance with ethics guidelines
Rúben F. Pereira and Paulo J. Bártolo declare that they have no conflict of interest or financial conflicts to disclose.
基金
作者感谢葡萄牙科技基金会(FCT)战略项目UID/Multi/04044/2013给予的支持。Rúben F. Pereira致谢FCT博士基金(SFRH/BD/91151/2012)。()
PDF(13414 KB)

Accesses

Citation

Detail

段落导航
相关文章

/