蒸汽压力和超疏水纳米复合涂层对微电子器件可靠性的影响

樊学军 , 陈良彪 , 汪正平 , Hsing-Wei Chu , 张国旗

工程(英文) ›› 2015, Vol. 1 ›› Issue (3) : 384 -390.

PDF (1776KB)
工程(英文) ›› 2015, Vol. 1 ›› Issue (3) : 384 -390. DOI: 10.15302/J-ENG-2015034
研究论文

蒸汽压力和超疏水纳米复合涂层对微电子器件可靠性的影响

作者信息 +

Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability

Author information +
文章历史 +
PDF (1818K)

摘要

由于高蒸汽压力可能导致微电子器件在高温和高湿度环境中失效,蒸汽压力的描述和模拟对研究微电子器件的湿度可靠性至关重要。为了最大程度地减小湿度的影响,可以在器件外表面涂抹一层超疏水涂层,以防止水分渗入。但是,超疏水涂层提高微电子器件可靠性的具体机制目前仍没有完全被理解。本文首先介绍了微电子高分子材料蒸汽压力的现有的一些理论。笔者还根据实验结果论述了超疏水涂层在防止水蒸气进入器件方面的机制和有效性。本文重点讨论了两个理论模型:基于微观力学的全场蒸汽压力模型和对流扩散模型。这两种方法都已成功用于说明无涂层样本的实验结果。但是,当器件上涂有超疏水纳米复合涂层时,笔者仍发现器件质量增加,其原因很可能是水蒸气可以透过超疏水涂层渗入。这种现象导致人们对超疏水涂层的有效性产生怀疑。根据理论和实验结果,笔者认为需要提出一种新的理论来理解水蒸气如何渗透超疏水涂层。

Abstract

Modeling vapor pressure is crucial for studying the moisture reliability of microelectronics, as high vapor pressure can cause device failures in environments with high temperature and humidity. To minimize the impact of vapor pressure, a super-hydrophobic (SH) coating can be applied on the exterior surface of devices in order to prevent moisture penetration. The underlying mechanism of SH coating for enhancing device reliability, however, is still not fully understood. In this paper, we present several existing theories for predicting vapor pressure within microelectronic materials. In addition, we discuss the mechanism and effectiveness of SH coating in preventing water vapor from entering a device, based on experimental results. Two theoretical models, a micro-mechanics-based whole-field vapor pressure model and a convection-diffusion model, are described for predicting vapor pressure. Both methods have been successfully used to explain experimental results on uncoated samples. However, when a device was coated with an SH nanocomposite, weight gain was still observed, likely due to vapor penetration through the SH surface. This phenomenon may cast doubt on the effectiveness of SH coatings in microelectronic devices. Based on current theories and the available experimental results, we conclude that it is necessary to develop a new theory to understand how water vapor penetrates through SH coatings and impacts the materials underneath. Such a theory could greatly improve microelectronics reliability.

关键词

蒸汽压力 / 湿度 / 半导体可靠性 / 微机电系统(MEMS) / 超疏水 / 纳米复合涂层

Key words

vapor pressure / moisture / semiconductor reliability / microelectromechanical systems (MEMS) / super-hydrophobic / nanocomposite coating

引用本文

引用格式 ▾
樊学军, 陈良彪, 汪正平, Hsing-Wei Chu, 张国旗 蒸汽压力和超疏水纳米复合涂层对微电子器件可靠性的影响[J]. 工程(英文), 2015, 1(3): 384-390 DOI:10.15302/J-ENG-2015034

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

基金资助

笔者感谢中国国家高技术研究发展计划 (863计划) (2015AA03A101) 的部分支持。()

AI Summary AI Mindmap
PDF (1776KB)

2025

访问

0

被引

详细

导航
相关文章

AI思维导图

/