组合材料芯片的个体化微区合成与表征

工程(英文) ›› 2015, Vol. 1 ›› Issue (2) : 225-233.

PDF(2547 KB)
PDF(2547 KB)
工程(英文) ›› 2015, Vol. 1 ›› Issue (2) : 225-233. DOI: 10.15302/J-ENG-2015041
研究论文
Research

组合材料芯片的个体化微区合成与表征

作者信息 +

Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips

Author information +
History +

Abstract

Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial materials chip technology, featuring high-throughput synthesis and characterization, is able to determine the phase diagram of an entire composition spread of a binary or ternary system at a single temperature on one materials library, which, though significantly increasing efficiency, still requires many libraries processed at a series of temperatures in order to complete a phase diagram. In this paper, we propose a “one-chip method” to construct a complete phase diagram by individually synthesizing each pixel step by step with a progressive pulse of energy to heat at different temperatures while monitoring the phase evolution on the pixel in situ in real time. Repeating this process pixel by pixel throughout the whole chip allows the entire binary or ternary phase diagram to be mapped on one chip in a single experiment. The feasibility of this methodology is demonstrated in a study of a Ge-Sb-Te ternary alloy system, on which the amorphous-crystalline phase boundary is determined.

Keywords

combinatorial materials chip / phase diagram / pixel synthesis / in-situ characterization / phase-boundary determination

引用本文

导出引用
. . Engineering. 2015, 1(2): 225-233 https://doi.org/10.15302/J-ENG-2015041

参考文献

[1]
X. D. Xiang, A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738−1740
[2]
M. L. Green, I. Takeuchi, J. R. Hattrick-Simpers. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys., 2013, 113(23): 231101
[3]
R. A. Potyrailo, V. M. Mirsky. Combinatorial and high-throughput development of sensing materials: The first 10 years. Chem. Rev., 2008, 108(2): 770−813
[4]
S. S. Mao. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123−130
[5]
L. Chen, J. Bao, C. Gao, S. Huang, C. Liu, W. Liu. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system. J. Comb. Chem., 2004, 6(5): 699−702
[6]
J. C. Zhao, M. R. Jackson, L. A. Peluso, L. N. Brewer. A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 2002, 27(04): 324−329
[7]
J. Montgomery. Chemistry. High-throughput discovery of new chemical reactions. Science, 2011, 333(6048): 1387−1388
[8]
J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence. J. Vac. Sci. Technol. A, 2010, 28(5): 1279−1280
[9]
J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, R. B. van Dover. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev. Sci. Instrum., 2009, 80(12): 123905
[10]
E. Reddington, Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735−1737
[11]
X. Liu, Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett., 2012, 12(11): 5733−5739
[12]
T. Wei, X. D. Xiang, W. G. Wallace-Freedman, P. G. Schultz. Scanning tip microwave near-field microscope. Appl. Phys. Lett., 1996, 68(24): 3506−3508
[13]
A. Oral, S. J. Bending, M. Henini. Scanning hall probe microscopy of superconductors and magnetic materials. J. Vac. Sci. Technol. B, 1996, 14(2): 1202−1205
[14]
I. Takeuchi, Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1–xO composition spreads. J. Appl. Phys., 2003, 94(11): 7336−7340
[15]
S. Huxtable, D. G. Cahill, V. Fauconnier, J. O. White, J. C. Zhao. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 2004, 3(5): 298−301
[16]
H. J. Kim, J. H. Han, R. Kaiser, K. H. Oh, J. J. Vlassak. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams. Rev. Sci. Instrum., 2008, 79(4): 045112
[17]
C. Allibert, C. Bernard, N. Valignat, M. Dombre. Co-Cr binary system: Experimental re-determination of the phase diagram and comparison with the diagram calculated from the thermodynamic data. J. Less Common Met., 1978, 59(2): 211−228
[18]
K. Ishida, T. Nishizawa. The Co-Cr (cobalt-chromium) system. Bull. Alloy Phase Diagr., 1990, 11(4): 357−370
[19]
T. Nishizawa, K. Ishida. The Co-Fe (cobalt-iron) system. Bull. Alloy Phase Diagr., 1984, 5(3): 250−259
[20]
J. C. Tedenac. Cobalt-iron-nickel. In: G. Effenberg, S. Ilyenko, eds. Iron Systems, Part 2. Berlin: Springer Berlin Heidelberg, 2008: 653−672
[21]
V. Raghavan. Co-Fe-Ni (cobalt-iron-nickel). J. Phase Equilibria, 1994, 15(5): 526−527
[22]
Y. K. Yoo, Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips. Intermetallics, 2006, 14(3): 241−247
[23]
H. Chang, I. Takeuchi, X. D. Xiang. A low-loss composition region identified from a thin-film composition spread of (Ba1–x–y SrxCay)TiO3. Appl. Phys. Lett., 1999, 74(8): 1165−1167
[24]
Y. K. Yoo, Strong correlation between high-temperature electronic and low-temperature magnetic ordering in La1–xCaxMnO3 continuous phase diagram. Phys. Rev. B, 2001, 63(22): 224421
[25]
I. Takeuchi, Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method. J. Appl. Phys., 2001, 90(5): 2474−2478
[26]
Y. K. Yoo, F. Duewer, H. Yang, D. Yi, J. W. Li, X. D. Xiang. Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites. Nature, 2000, 406(6797): 704−708
[27]
L. Fister, D. C. Johnson. Controlling solid-state reaction mechanisms using diffusion length in ultrathin-film superlattice composites. J. Am. Chem. Soc., 1992, 114(12): 4639−4644
[28]
I. Takeuchi, Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries. Appl. Phys. Lett., 1998, 73(7): 894−896
[29]
A. V. Kolobov. Information storage: Around the phase-change cycle. Nat. Mater., 2008, 7(5): 351−353
[30]
G. I. Meijer. Materials science. Who wins the nonvolatile memory race? Science, 2008, 319(5870): 1625−1626
[31]
G. Atwood. Engineering. Phase-change materials for electronic memories. Science, 2008, 321(5886): 210−211
[32]
H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, H. K. Wickramasinghe. Ultra-high-density phase-change storage and memory. Nat. Mater., 2006, 5(5): 383−387
[33]
M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, R. Dronskowski. The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater., 2007, 6(2): 122−128
[34]
C. Peng, Improved thermal stability and electrical properties for Al-Sb-Te based phase-change memory. ECS Solid State Lett., 2012, 1(2): 38−41
[35]
X. Zhou, Phase transition characteristics of Al-Sb phase change materials for phase change memory application. Appl. Phys. Lett., 2013, 103(7): 072114
[36]
M. Belhadji, N. Benameur, J. M. Saiter, J. Grenet. Application of Gibbs-Di Marzio modified equation to the Ge-Te-Sb vitreous system. Phys. Status Solidi B, 1997, 201(2): 377−380
[37]
J. Siegel, C. N. Afonso, J. Solis. Dynamics of ultrafast reversible phase transitions in GeSb films triggered by picosecond laser pulses. Appl. Phys. Lett., 1999, 75(20): 3102−3104
[38]
H. J. Borg, Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn. J. Appl. Phys., 2001, 40(Part 1, 3B): 1592−1597
[39]
B. J. Kooi, J. Th. M. De Hosson. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J. Appl. Phys., 2004, 95(9): 4714−4721
[40]
B. J. Kooi, W. M. G. Groot, J. Th. M. De Hosson. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J. Appl. Phys., 2004, 95(3): 924−932

Acknowledgements

This work is supported in part by National High Technology Research and Development Program (2015AA034204), and the National Natural Science Foundation of China (51472044).
Compliance with ethics guidelines
Xiao-Dong Xiang, Gang Wang, Xiaokun Zhang, Yong Xiang, and Hong Wang declare that they have no conflict of interest or financial conflicts to disclose.
基金
本研究得到了中国国家高技术研究发展计划 (“863”计划) 项目 (SS2015AA034204) 和中国国家自然科学基金面上项目 (51472044) 的支持。()
PDF(2547 KB)

Accesses

Citation

Detail

段落导航
相关文章

/