
盐度差能:现状和新趋势
Salinity Gradient Energy: Current State and New Trends
In this article we give an overview of the state of the art of salinity gradient technologies. We first introduce the concept of salinity gradient energy, before describing the current state of development of the most advanced of these technologies. We conclude with the new trends in the young field of salinity gradient technologies.
salinity gradient energy / pressure-retarded osmosis / reverses electrodialysis
[1] |
R. E. Pattle. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 1954, 174(4431): 660
|
[2] |
J. D. Isaacs, R. J. Seymour. The ocean as a power resource. Int. J. Environ. Stud., 1973, 4(1−4): 201−205
|
[3] |
B. E. Logan, M. Elimelech. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488(7411): 313−319
|
[4] |
J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen. Reverse electrodialysis: Evaluation of suitable electrode systems. J. Appl. Electrochem., 2010, 40(8): 1461−1474
|
[5] |
D. A. Vermaas, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers, K. Nijmeijer. Clean energy generation using capacitive electrodes in reverse electrodialysis. Energy Environ. Sci., 2013, 6(2): 643−651
|
[6] |
D. A. Vermaas, M. Saakes, K. Nijmeijer. Power generation using profiled membranes in reverse electrodialysis. J. Membrane. Sci., 2011, 385−386: 234−242
|
[7] |
D. A. Vermaas, J. Veerman, M. Saakes, K. Nijmeijer. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ. Sci., 2014, 7(4): 1434−1445
|
[8] |
D. A. Vermaas, D. Kunteng, J. Veerman, M. Saakes, K. Nijmeijer. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis. Environ. Sci. Technol., 2014, 48(5): 3065−3073
|
[9] |
D. Brogioli. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett., 2009, 103(5): 058501
|
[10] |
B. B. Sales, M. Saakes, J. W. Post, C. J. Buisman, P. M. Biesheuvel, H. V. Hamelers. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Environ. Sci. Technol., 2010, 44(14): 5661−5665
|
[11] |
F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, Y. Cui. Batteries for efficient energy extraction from a water salinity difference. Nano Lett., 2011, 11(4): 1810−1813
|
[12] |
R. A. Tufa,
|
[13] |
B. B. Sales, O. S. Burheim, S. Porada, V. Presser, C. J. N. Buisman, H. V. M. Hamelers. Extraction of energy from small thermal differences near room temperature using capacitive membrane technology. Environ. Sci. Technol. Lett., 2014, 1(9): 356−360
|
[14] |
S. Ahualli, M. M. Fernández, G. Iglesias, Á. Delgado, M. L. Jiménez. Temperature effects on energy production by salinity exchange. Environ. Sci. Technol., 2014, 48(20): 12378−12385
|
[15] |
H. V. M. Hamelers, O. Schaetzle, J. M. Paz-García, P. M. Biesheuvel, C. J. N. Buisman. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett., 2014, 1(1): 31−35
|
/
〈 |
|
〉 |