中国功能晶体研究进展

工程(英文) ›› 2015, Vol. 1 ›› Issue (2) : 192-210.

PDF(18413 KB)
PDF(18413 KB)
工程(英文) ›› 2015, Vol. 1 ›› Issue (2) : 192-210. DOI: 10.15302/J-ENG-2015053
研究论文
Research

中国功能晶体研究进展

作者信息 +

Recent Developments in Functional Crystals in China

Author information +
History +

Abstract

Functional crystals are the basic materials for the development of modern science and technology and are playing key roles in the modern information era. In this paper, we review functional crystals in China, including research history, significant achievements, and important applications by highlighting the most recent progress in research. Challenges for the development of functional materials are discussed and possible directions for development are proposed by focusing on potential strengths of these materials.

Keywords

functional materials / laser crystals / nonlinear optical crystals / scintillation crystals / relaxor ferroelectric crystals / semiconductors

引用本文

导出引用
. . Engineering. 2015, 1(2): 192-210 https://doi.org/10.15302/J-ENG-2015053

参考文献

[1]
T. H. Maiman. Stimulated optical radiation in ruby. Nature, 1960, 187(4736): 493−494
[2]
W. Koechner. Solid-State Lasers Engineering. W. Sun, Z. W. Jiang, G. X. Cheng, trans. Beijing: Science Press, 2002 (in Chinese)
[3]
J. E. Geusic, H. M. Marcos, L. G. Van Uitert. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Lett., 1964, 4(10): 182−184
[4]
A. Kruusing. Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods. Opt. Lasers Eng., 2004, 41(2): 329−352
[5]
B. Jiang, Z. Zhao, G. Zhao, J. Xu. Thin disk solid state lasers and heat capacity solid state lasers. Laser & Optoelectronics Progress, 2006, 43(3): 3−8 (in Chinese)
[6]
A. Heller. Efficiently changing the color of laser light. S&TR, 2006-<month>10</month>-<day>19</day>. https://str.llnl.gov/str/Oct06/Ebbers.html
[7]
H. Yin, P. Deng, F. Gan. Defects in YAG:Yb crystals. J. Appl. Phys., 1998, 83(7): 3825−3828
[8]
J. Dong, A. Shirakawa, K. Ueda, J. Xu, P. Deng. Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique. Appl. Phys. Lett., 2006, 88(16): 161115
[9]
Y. H. Peng, Y. X. Lim, J. Cheng, Y. Guo, Y. Y. Cheah, K. S. Lai. Near fundamental mode 1.1 kW Yb:YAG thin-disk laser. Opt. Lett., 2013, 38(10): 1709−1711
[10]
J. Brons, Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Opt. Lett., 2014, 39(22): 6442−6445.
[11]
X. Liang, Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier. Opt. Express, 2007, 15(23): 15335−15341
[12]
V. Yanovsky, Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express, 2008, 16(3): 2109−2114
[13]
Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, Z. Wei. High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett., 2011, 36(16): 3194−3196
[14]
T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, J. Lee. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Opt. Express, 2012, 20(10): 10807−10815
[15]
Y. Chu, High-contrast 2.0 Petawatt Ti:sapphire laser system. Opt. Express, 2013, 21(24): 29231−29239
[16]
V. Chvykov, K. Krushelnick. Large aperture multi-pass amplifiers for high peak power lasers. Opt. Commun., 2012, 285(8): 2134−2136
[17]
H. Kiriyama, Temporal contrast enhancement of petawatt-class laser pulses. Opt. Lett., 2012, 37(16): 3363−3365
[18]
D. B. Joyce, F. Schmid. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. J. Cryst. Growth, 2010, 312(8): 1138−1141
[19]
A. Nehari, Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical characterizations. Cryst. Growth Des., 2011, 11(2): 445−448
[20]
S. F. Shao, Research progress in numerical simulation for crystal growth by czochralski method. J. Synth. Cryst., 2005, 34(4): 687−692 (in Chinese)
[21]
R. Peters, C. Kränkel, K. Petermann, G. Huber. Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency. Opt. Express, 2007, 15(11): 7075−7082
[22]
N. S. Prasad, Recent progress in the development of neodymium-doped ceramic yttria. IEEE J. Sel. Top. Quant., 2007, 13(3): 831−837
[23]
G. Boulon, Search of optimized trivalent ytterbium doped-inorganic crystals for laser applications. J. Alloy. Compd., 2002, 341(1−2): 2−7
[24]
R. H. Hoskins, B. H. Soffer. Stimulated emission from Y2O3:Nd3+. Appl. Phys. Lett., 1964, 4(1): 22−23
[25]
L. Fornasiero, E. Mix, V. Peters, E. Heumann, K. Petermann, G. Huber. Efficient laser operation of Nd:Sc2O3 at 966 nm, 1082 nm and 1486 nm. In: OSA Trends in Optics and Photonics Vol.26 Advanced Solid-State lasers (Optical Society of America, 1999). Boston, MA, US, 1999: 249−251
[26]
L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber. New oxide crystals for solid state lasers. Cryst. Res. Technol., 1999, 34(2): 255−260
[27]
K. Petermann, Highly Yb-doped oxides for thin-disc lasers. J. Cryst. Growth, 2005, 275(1−2): 135−140
[28]
P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert. Highly efficient mode-locked Yb:Sc2O3 laser. Opt. Lett., 2004, 29(4): 391−393
[29]
C. R. E. Baer, Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power. Opt. Lett., 2009, 34(18): 2823−2825
[30]
C. R. E. Baer, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett., 2010, 35(13): 2302−2304
[31]
L. Hao, Spectroscopy and laser performance of Nd:Lu2O3 crystal. Opt. Express, 2011, 19(18): 17774−17779
[32]
J. R. O’Conner. Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd. Appl. Phys. Lett., 1966, 9(11): 407−409
[33]
P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, I. A. Shcherbakov. GdVO4 as a new medium for solid-state lasers: Some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions. Quantum Electron., 1995, 25(12): 1162−1165
[34]
C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, E. Cavalli. Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping. J. Opt. Soc. Am. B, 2002, 19(8): 1794−1800
[35]
B. Yao, Crystal growth and laser performance of neodymium-doped scandium orthovanadate. J. Cryst. Growth, 2010, 312(5): 720−723
[36]
J. Liu, Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1–xVO4 crystals. Appl. Phys. Lett., 2003, 83(7): 1289−1291
[37]
H. Yu, Enhancement of passive Q-switching performance with mixed Nd:LuxGd1–xVO4 laser crystals. Opt. Lett., 2007, 32(15): 2152−2154
[38]
P. P. Yaney, L. G. DeShazer. Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4. J. Opt. Soc. Am., 1976, 66(12): 1405−1414
[39]
W. Li, E. Shi, W. Zhong, Z. Yin. Anion coordination polyhedron growth unit theory mode and crystal morphology. J. Synth. Cryst., 1999, 28(2): 117−125 (in Chinese)
[40]
M. Wei, G. Li, Y. Zhu, X. Wu, Z. Yu, S. Teng. Raw material synthesis of yttrium vanadate crystals (Nd3+:YVO4:YVO4). J. Synth. Cryst., 1998, 27(2): 178−181 (in Chinese)
[41]
X. Meng, L. Zhu, H. Zhang, C. Wang, Y. T. Chow, M. Lu. Growth, morphology and laser performance of Nd:YVO4 crystal. J. Cryst. Growth, 1999, 200(1−2): 199−203
[42]
P. Shi, D. Li, H. Zhang, Y. Wang, K. Du. An 110 W Nd:YVO4 slab laser with high beam quality output. Opt. Commun., 2004, 229(1−6): 349−354
[43]
L. Cui, 880 nm laser-diode end-pumped Nd:YVO4 slab laser at 1342 nm. Laser Phys., 2011, 21(1): 105−107
[44]
J. J. Zayhowski, C. Dill Iii. Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers. Opt. Lett., 1995, 20(7): 716−718
[45]
D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, A. Tünnermann. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime. Opt. Lett., 2007, 32(15): 2115−2117
[46]
H. Lin, J. Li, X. Liang. 105 W,<10 ps, TEM00 laser output based on an in-band pumped Nd:YVO4 Innoslab amplifier. Opt. Lett., 2012, 37(13): 2634−2636
[47]
H. Zhang, Growth of new laser crystal Nd:LuVO4 by the Czochralski method. J. Cryst. Growth, 2003, 256(3−4): 292−297
[48]
J. Liu, Continuous-wave and pulsed laser performance of Nd:LuVO4 crystal. Opt. Lett., 2004, 29(2): 168−170
[49]
W. K. Jang, Q. Ye, J. Eichenholz, M. C. Richardson, B. H. T. Chai. Second harmonic generation in Yb doped YCa4O(BO3)3. Opt. Commun., 1998, 155(4−6): 332−334
[50]
D. Vivien, F. Mongel, G. Aka, A. Kahn-Harari, D. Pelenc. Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): A multifunctional material exhibiting both laser and nonlinear optical properties. Laser Phys., 1998, 8(3): 759−763
[51]
Q. Ye, B. H. T. Chai. Crystal growth of YCa4O(BO3)3 and its orientation. J. Cryst. Growth, 1999, 197(1−2): 228−235
[52]
Z. Wang, K. Fu, X. Xu, X. Sun, H. Jiang, R. Song, J. Liu, J. Wang, Y. Liu, J. Wei, Z. Shao. The optimum configuration for the third-harmonic generation of 1.064 μm in a YCOB crystal. Appl. Phys. B, 2001, 72(7): 839−842
[53]
P. Yuan, G. Xie, D. Zhang, H. Zhong, L. Qian. High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling. Opt. Lett., 2010, 35 (11): 1878−1880
[54]
G. Aka, Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3. J. Opt. Soc. Am. B, 1997, 14(9): 2238−2247
[55]
O. H. Heckl, Continuous-wave and modelocked Yb:YCOB thin disk laser: First demonstration and future prospects. Opt. Express, 2010, 18(18): 19201−19208
[56]
A. Yoshida, Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses. Opt. Lett., 2011, 36(22): 4425−4427
[57]
J. Y. Wang, H. H. Yu, H. J. Zhang, J. Li, N. Zong, Z. Y. Xu. Progress on the research and potential applications of self-frequency doubling crystals. Progress in Phys., 2011, 31(2): 91−110 (in Chinese)
[58]
H. Yu, Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm. Opt. Lett., 2011, 36(19): 3852−3854
[59]
T. Hahn. The International Tables for Crystallography. Myrtle Beach, SC: Springer Press, 1983
[60]
G. Zhang, G. Lan, Y. Wang. Lattice Vibrational Spectroscopy. Beijing: Higher Education Press, 2001 (in Chinese)
[61]
Z. Hu, Y. Zhao. A method and its apparatus for the large size nonlinear optical crystal growth by combination of crucible and seed crystal: CN, 101503819. 2009-<month>08</month>-<day>12</day> (in Chinese)
[62]
C. Chen, B. Wu, A. Jiang, G. You. A new type of ultraviolet SHG crystsl—β-BaB2O4. Sci. Sin. Ser. B, 1985, 28(4): 235−243
[63]
D. N. Nikogosyan. Beta barium borate (BBO). Appl. Phys. A-Mater, 1991, 52(6): 359−368
[64]
D. Perlov, S. Livneh, P. Czechowicz, A. Goldgirsh, D. Loiacono. Progress in growth of large β-BaB2O4 single crystals. Cryst. Res. Technol., 2011, 46(7): 651−654
[65]
N. Ye, D. Tang. Hydrothermal growth of KBe2BO3F2 crystals. J. Cryst. Growth, 2006, 293(2): 233−235
[66]
C. T. Chen. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal. Opt. Mater., 2004: 26(4), 425−429
[67]
G. Wang, 12.95 mW sixth harmonic generation with KBe2BO3F2 crystal. Appl. Phys. B-Lasers. O., 2008, 91(1): 95−97
[68]
C. T. Chen, G. L. Wang, X. Y. Wang, Z. Y. Xu. Deep-UV nonlinear optical crystal KBe2BO3F2—Discovery, growth, optical properties and applications. Appl. Phys. B-Lasers. O., 2009, 97(1): 9−25
[69]
T. Kanai, X. Wang, S. Adachi, S. Watanabe, C. Chen. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device. Opt Express, 2009, 17(10): 8696−8703
[70]
G. Liu, Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum., 2008, 79(2): 023105
[71]
X. Wen. Theoretical and Experimental Study of Electrically Driven Traveling-Wave Thermoacoustic Refrigerator in Room Temperature Range. Beijing: Technical Institute of Physics and Chemistry, CAS, 2006 (in Chinese)
[72]
C. Chen, Deep UV nonlinear optical crystal: RbBe2(BO3)F2. J. Opt. Soc. Am. B, 2009, 26(8): 1519−1525
[73]
H. Dai, C. Chen. Realization methods of laser jamming in helicopter with mid-infrared lasers. Jour. Sichuan Ordnance, 2011, 32(1): 114−116 (in Chinese)
[74]
D. Sandy. Electronic Warfare Handbook 2008. Berkshire: The Shephard Press Ltd., 2008
[75]
G. A. Verozubova, A. I. Gribenyukov, Y. P. Mironov. Two-temperature synthesis of ZnGeP2. Inorg. Mater., 2007, 43(10): 1040−1045
[76]
K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak. Large aperture single crystal ZnGeP2 for high-energy applications. J. Cryst. Growth, 2008, 310(7−9): 1891−1896
[77]
G. A. Verozubova, A. I. Gribenyukov. Growth of ZnGeP2 crystals from melt. Crystallogr. Rep., 2008, 53(1): 158−163
[78]
Z. Lei, C. Zhu, C. Xu, B. Yao, C. Yang. Growth of crack-free ZnGeP2 large single crystals for high-power mid-infrared OPO applications. J. Cryst. Growth, 2014, 389: 23−29
[79]
S. Wang, Crystal growth and piezoelectric, elastic and dielectric properties of novel LiInS2 crystal. J. Cryst. Growth, 2013, 362: 308−311
[80]
Q. Yu, Z. Gao, S. Zhang, W. Zhang, S. Wang, X. Tao. Second order nonlinear properties of monoclinic single crystal BaTeMo2O9. J. Appl. Phys., 2012, 111(1): 013506
[81]
J. Cheng, Synthesis and growth of ZnGeP2 crystals: Prevention of non-stoichiometry. J. Cryst. Growth, 2013, 362: 125−129
[82]
Y. Li, Z. Wu, X. Zhang, L. Wang, J. Zhang, Y. Wu. Crystal growth and terahertz wave generation of organic NLO crystals: OH1. J. Cryst. Growth, 2014, 402: 53−59
[83]
Y. Li, J. Zhang, G. Zhang, L. Wu, P. Fu, Y. Wu. Growth and characterization of DSTMS crystals. J. Cryst. Growth, 2011, 327(1): 127−132
[84]
X. Lin, G. Zhang, N. Ye. Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics. Cryst. Growth Des., 2009, 9(2): 1186−1189
[85]
J. Yao, BaGa4Se7: A new congruent-melting IR nonlinear optical material. Inorg. Chem., 2010, 49(20): 9212−9216
[86]
C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter. 700 W intracavity-frequency doubled Yb:YAG thin-disk laser at 100 kHz repetition rate. In: W. A. Clarkson, N. Hodgson, R. K. Shori, eds. Proceedings of SPIE 7578, Solid State Lasers XIX: Technology and Devices. San Francisco, CA, USA, 2010: 75780A
[87]
G. D. Goodno, Investigation of β-BaB2O4 as a Q switch for high power applications. Appl. Phys. Lett., 1995, 66(13): 1575−1577
[88]
C. Stolzenburg, A. Giesen, F. Butze, P. Heist, G. Hollemann. Cavity-dumped intracavity-frequency-doubled Yb:YAG thin disk laser with 100 W average power. Opt. Lett., 2007, 32(9): 1123−1125
[89]
M. Roth, N. Angert, M. Tseitlin. Growth-dependent properties of KTP crystals and PPKTP structures. J. Mater. Sci-Mater. El., 2001, 12(8): 429−436
[90]
M. Roth, M. Tseitlin, N. Angert. Oxide crystals for electro-optic Q-switching of lasers. Glass Phys. Chem., 2005, 31(1): 86−95
[91]
Yu. V. Shaldin, S. Matyjasik, M. Tseitlin, M. Roth. Specific features of the pyroelectric properties of actual RbTiOPO4 single crystals in the temperature range 4.2−300 K. Phys. Solid State, 2008, 50(7): 1315−1312
[92]
M. Roth, M. Tseitlin. Growth of large size high optical quality KTP-type crystals. J. Cryst. Growth, 2010, 312(8): 1059−1064
[93]
J. Y. Wang, Progress of the electro-optic crystal research and the symmetry dependence of electro-optic effect. Progress in Phys., 2012, 32(1): 33−56 (in Chinese)
[94]
L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, J. Wang. 520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser. Opt. Lett., 2012, 37(11): 1986−1988
[95]
L. Wang, 2.79 m high peak power LGS electro-optically Q-switched Cr, Er:YSGG laser. Opt. Lett., 2013, 38(12): 2150−2152
[96]
M. Kiefer, F. Pröbst, G. Angloher, I. Bavykina, D. Hauff, W. Seidel. Glued CaWO4 detectors for the CRESST-II experiment. Opt. Mater., 2009, 31(10): 1410−1414
[97]
H. Kraus, ZnWO4 scintillators for cryogenic dark matter experiments. Nucl. Instrum. Meth. A, 2009, 600(3): 594−598
[98]
J. Chen, G. Zhao, D. Cao, S. Zhou. Color center of YAlO3 with cation vacancies. Curr. Appl. Phys., 2010, 10(2): 468−470
[99]
Q. Gui, C. Zhang, M. Zhang, L. Hang, Z. Fang, Y. Ge. Study on crystal growth and scintillation properties of large-size CeCl3 doped LaBr3 crystal. Nuclear Electronics & Detection Technology, 2011, 31(11): 1195−1197, 1249 (in Chinese)
[100]
Y. Zhang, M. Luo. Study on temperature characteristics of LaBr3 detector. Nuclear Electronics & Detection Technology, 2013, 33(2): 188−190 (in Chinese)
[101]
Z. Ye. Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: Properties and present understanding. Ferroelectrics, 1996, 184(1): 193−208
[102]
D. Viehland. Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3-PbTiO3 crystals. J. Appl. Phys., 2000, 88(8): 4794−4806
[103]
G. A. Smolensky. Physical phenomena in ferroelectrics with diffused phase transition. J. Phys. Soc. Jpn, 1970, 28(Suppl.): 26−37
[104]
S. E. Park, T. R. Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys., 1997, 82(4): 1804−1811
[105]
K. Saitoh, Y. Ishimaru, H. Fuke, Y. Enomoto. A model analysis for current-voltage characteristics of superconducting weak links. Jpn. J. Appl. Phys., 1997, 36(Part 2, No. 3A): L272−L275
[106]
L. Liu, Dielectric, ferroelectric, and pyroelectric characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3–0.26PbTiO3 crystals for infrared detection applications. Appl. Phys. Lett., 2009, 95(19): 192903
[107]
A. Borisevich, Lead tungstate scintillation crystal with increased light yield for the PANDA electromagnetic calorimeter. Nucl. Instrum. Meth. A, 2005, 537(1−2): 101−104
[108]
S. Saitoh, M. Izumi, Y. Yamashita, S. Shimanuki, M. Kawachi, T. Kobayashi. Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe: US, 5402791A, 1995-<month>04</month>-<day>04</day>
[109]
B. Ren, S. W. Or, X. Zhao, H. Luo. Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. J. Appl. Phys., 2010, 107(3): 034501
[110]
N. Neumann, M. Es-Souni, H. Luo. Application of pmN-PT in pyroelectric detectors. In: Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics. Xi’an, China, 2009: 1−3
[111]
Y. Wang, S. W. Or, H. L. W. Chan, X. Zhao, H. Luo. Magnetoelectric effect from mechanically mediated torsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystal. Appl. Phys. Lett., 2008, 92(12): 123510
[112]
H. Luo, G. Xu, H. Xu, P. Wang, Z. Yin. Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified bridgman technique. Jpn. J. Appl. Phys., 2000, 39(Part 1, No. 9B): 5581−5585
[113]
P. Yu, Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary single crystal. Appl. Phys. Lett., 2008, 92(25): 252907
[114]
B. Gao, G. L. Yu, J. B. Li. Numerical simulation and experimental study on two-dimensional solid/fluid phononic crystals. J. Synth. Cryst., 2010, 39(3): 680−686
[115]
Y. Gao, Evolution and structure of low-angle grain boundaries in 6H-SiC single crystals grown by sublimation method. J. Cryst. Growth, 2010, 312(20): 2909−2913

Acknowledgements

This work is supported by NSFC (51372139). Many colleagues have provided their data, including papers, photos, and other information; these are Shibin Zhou, Yin Hang, Zhanggui Hu, Guochun Zhang, Chunhui Yang, Ning Ye, Haosu Luo, and Guohao Ren. We have also had many useful discussions. We provide acknowledgement for all these supports.
Compliance with ethics guidelines
Jiyang Wang, Haohai Yu, Yicheng Wu, and Robert Boughton declare that they have no conflict of interest or financial conflicts to disclose.
基金
本论文得到国家自然科学基金(NSFC) (51372139)的支持。()
PDF(18413 KB)

Accesses

Citation

Detail

段落导航
相关文章

/