基于细胞打印的三维MCF-7乳腺癌细胞球高通量构建研究
凌楷 , 黄国友 , 刘俊聪 , 张晓慧 , 马玉菲 , 卢天健 , 徐峰
工程(英文) ›› 2015, Vol. 1 ›› Issue (2) : 269 -274.
基于细胞打印的三维MCF-7乳腺癌细胞球高通量构建研究
Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids
基于细胞球的体外组织模型在生理病理机理和药物筛选方面具有重要的研究意义和广阔的应用前景,利用微纳生物制造技术可控构建细胞球已吸引了越来越多研究者的关注。微孔板法作为一种简单易行的细胞球构建方法经常被研究者采用,但目前的微孔板法存在结构制备和可控性不足、细胞种植不均匀以及细胞容易流失等问题。本文利用自行搭建的细胞打印技术制备载细胞的明胶微凝胶作为模板,构建了带有凹面微孔阵列的聚乙二醇二甲基丙烯酸酯水凝胶微孔板芯片并原位形成了乳腺癌细胞球。本方法操作灵活、可控性好,避免了细胞种植不均匀和细胞流失等问题,在组织工程、再生医学以及药物筛选等研究具有重要的应用价值。
Cellular spheroids serving as three-dimensional (3D) in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.
MCF-7 cellular spheroids / bioprinting / hydrogels / concave wells / tissue on a chip
/
〈 |
|
〉 |