
吖啶– 核定位序列偶联构建的高活性抗菌肽
Conjugation with Acridines Turns Nuclear Localization Sequence into Highly Active Antimicrobial Peptide
The emergence of multidrug-resistant bacteria creates an urgent need for alternative antibiotics with new mechanisms of action. In this study, we synthesized a novel type of antimicrobial agent, Acr3-NLS, by conjugating hydrophobic acridines to the N-terminus of a nuclear localization sequence (NLS), a short cationic peptide. To further improve the antimicrobial activity of our agent, dimeric (Acr3-NLS)2 was simultaneously synthesized by joining two monomeric Acr3-NLS together via a disulfide linker. Our results show that Acr3-NLS and especially (Acr3-NLS)2 display significant antimicrobial activity against gram-negative and gram-positive bacteria compared to that of the NLS. Subsequently, the results derived from the study on the mechanism of action demonstrate that Acr3-NLS and (Acr3-NLS)2 can kill bacteria by membrane disruption and DNA binding. The double targets–cell membrane and intracellular DNA–will reduce the risk of bacteria developing resistance to Acr3-NLS and (Acr3-NLS)2. Overall, this study provides a novel strategy to design highly effective antimicrobial agents with a dual mode of action for infection treatment.
acridine / nuclear localization sequence / conjugate / antimicrobial activity / mechanism of action
[1] |
M. S. Butler, M. A. Blaskovich, M. A. Cooper. Antibiotics in the clinical pipeline in 2013. J. Antibiot., 2013, 66(10): 571–591
|
[2] |
C. W. Pouton, K. M. Wagstaff, D. M. Roth, G. W. Moseley, D. A. Jans. Targeted delivery to the nucleus. Adv. Drug Deliv. Rev., 2007, 59(8): 698–717
|
[3] |
L. J. Brandén, A. J. Mohamed, C. I. Smith. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol., 1999, 17(8): 784–787
|
[4] |
T. Shiraishi, R. Hamzavi, P. E. Nielsen. Targeted delivery of plasmid DNA into the nucleus of cells via nuclear localization signal peptide conjugated to DNA intercalating bis- and trisacridines. Bioconjug. Chem., 2005, 16(5): 1112–1116
|
[5] |
N. Kobayashi, Y. Yamada, T. Yoshida. Nuclear translocation peptides as antibiotics. Antimicrob. Agents Chemother., 2006, 50(3): 1118–1119
|
[6] |
J. Feigon, W. A. Denny, W. Leupin, D. R. Kearns. Interactions of antitumor drugs with natural DNA: 1H NMR study of binding mode and kinetics. J. Med. Chem., 1984, 27(4): 450–465
|
[7] |
R. Kumar, M. Kaur, M. Kumari. Acridine: A versatile heterocyclic nucleus. Acta Pol. Pharm., 2012, 69(1): 3–9
|
[8] |
G. Cholewiński, K. Dzierzbicka, A. M. Kołodziejczyk. Natural and synthetic acridines/acridones as antitumor agents: Their biological activities and methods of synthesis. Pharmacol. Rep., 2011, 63(2): 305–336
|
[9] |
A. F. Valdés. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med. Chem. J., 2011, 5: 11–20
|
[10] |
M. Wainwright. Acridine—A neglected antibacterial chromophore. J. Antimicrob. Chemother., 2001, 47(1): 1–13
|
[11] |
S. Majumdar, T. J. Siahaan. Peptide-mediated targeted drug delivery. Med. Res. Rev., 2012, 32(3): 637–658
|
[12] |
V. M. Ahrens, K. Bellmann-Sickert, A. G. Beck-Sickinger. Peptides and peptide conjugates: Therapeutics on the upward path. Future Med. Chem., 2012, 4(12): 1567–1586
|
[13] |
A. Pini,
|
[14] |
E. N. Lorenzón,
|
[15] |
J. Wang, S. Li, T. Luo, C. Wang, J. Zhao. Disulfide linkage: A potent strategy in tumor-targeting drug discovery. Curr. Med. Chem., 2012, 19(18): 2976–2983
|
[16] |
N. J. Baumhover, K. Anderson, C. A. Fernandez, K. G. Rice. Synthesis and in vitro testing of new potent polyacridine-melittin gene delivery peptides. Bioconjug. Chem., 2010, 21(1): 74–83
|
[17] |
J. Song,
|
[18] |
M. Zasloff. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870): 389–395
|
[19] |
M. R. Yeaman, N. Y. Yount. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1): 27–55
|
[20] |
A. Schmidtchen, M. Pasupuleti, M. Malmsten. Effect of hydrophobic modifications in antimicrobial peptides. Adv. Colloid. Interfac., 2014, 205: 265–274
|
[21] |
Z. Jiang, A. I. Vasil, J. D. Hale, R. E. W. Hancock, M. L. Vasil, R. S. Hodges. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers, 2008, 90(3): 369–383
|
[22] |
L. M. Yin, M. A. Edwards, J. Li, C. M. Yip, C. M. Deber. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem., 2012, 287(10): 7738–7745
|
[23] |
N. Sitaram, R. Nagaraj. Interaction of antimicrobial peptides with biological and model membranes: Structural and charge requirements for activity. Biochim. Biophys. Acta, 1999, 1462(1−2): 29–54
|
[24] |
Y. Chen, M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant, R. S. Hodges. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4): 1398–1406
|
[25] |
T. Tachi, R. F. Epand, R. M. Epand, K. Matsuzaki. Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry, 2002, 41(34): 10723–10731
|
[26] |
J. Song,
|
[27] |
L. H. Kondejewski,
|
[28] |
C. E. Dempsey, S. Ueno, M. B. Avison. Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry, 2003, 42(2): 402–409
|
[29] |
K. A. Brogden. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3): 238–250
|
[30] |
P. Nicolas. Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. FEBS J., 2009, 276(22): 6483–6496
|
[31] |
J. Yan,
|
[32] |
S. T. Henriques, M. N. Melo, M. A. R. B. Castanho. Cell-penetrating peptides and antimicrobial peptides: How different are they? Biochem. J., 2006, 399(1): 1–7
|
/
〈 |
|
〉 |