基于马尔可夫到达过程的两级可修备件(S-1,S)库存优化模型
A two-echelon (S-1,S) inventory model for repairable items based on markovian arrival process
本文以两级可修备件库存系统为研究对象,采用马尔可夫到达过程(MAP)描述备件需求规律,考虑有限维修设施的情况,假设故障件维修时间、备件运输时间以及采购时间均服从phase-type(PH)分布,建立了一种描述能力更强、解析计算性更好的(S-1,S)库存优化模型,并推导出系统缺货量分布函数;然后通过算例演示了模型的优化效果,验证了模型的正确性和适用性。
This paper investigates a two-echolon inventory system with (S-1,S) policy that consists of several same repairable items and single repair facility, and assumes that the item demand occur according to a markovian arrival process (MAP), the repair time, ship time and procurement time follow the general distribution which is represented by phase-type (PH) distribution. Then a inventory optimization model with better description ability and analytical performance is given, and the probability distribution of backorder is obtained. Finally, a numerical example was given to illustrate the effectiveness of the model.
(S-1 / S)库存策略 / 两级库存 / 可修备件 / 马尔可夫到达过程
(S-1 / S) policy / two-echelon inventory / repairable item / markovian arrival process
1980年出生,男,河南驻马店市人,博士,研究方向为装备综合保障,系统可靠性
/
〈 |
|
〉 |