基于Laplacian特征映射的被动毫米波目标识别

罗磊,李跃华,栾英宏

中国工程科学 ›› 2010, Vol. 12 ›› Issue (3) : 77 -81.

PDF (928KB)
中国工程科学 ›› 2010, Vol. 12 ›› Issue (3) : 77 -81.

基于Laplacian特征映射的被动毫米波目标识别

作者信息 +

Passive millimeter-wave target recognition based on Laplacian eigenmaps

Author information +
文章历史 +
PDF (949K)

摘要

针对传统被动毫米波金属目标识别方法中特征提取、选择的缺点,采用Laplacian特征映射流形学习算法发现了金属目标回波信号短

Abstract

Aiming at the disadvantages of feature extraction and selection in the traditional method for passive millimeter-wave (MMW) metal target recognition, the existence and characteristics of low dimensional manifold of the short-time Fourier spectrum of metal target echo signal are explored using manifold learning algorithm, Laplacian eigenmaps. Target classification is performed through comparing the similarity of the test samples and the positive class in terms of the low dimensional manifold. The experiments show that the method gets higher recognition rate than other linear and kernel-based nonlinear dimensionality reduction algorithm, and is robust to data aliasing.

关键词

流形学习 / Laplacian特征映射 / 非线性降维 / 低维流形 / 毫米波

Key words

manifold learning / Laplacian eigenmaps / nonlinear dimensionality reduction / low dimensional manifold / MMW

Author summay

李跃华(1959-),男,江苏宿迁市人,南京理工大学教授,博士生导师,研究方向为探测与目标识别、信号处理与智能化技术

引用本文

引用格式 ▾
罗磊,李跃华,栾英宏 基于Laplacian特征映射的被动毫米波目标识别[J]. 中国工程科学, 2010, 12(3): 77-81 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF (928KB)

34

访问

0

被引

详细

导航
相关文章

AI思维导图

/