新安江模型参数有效优化及不确定性评估

王文川,程春田,邱林,杨斌斌

中国工程科学 ›› 2010, Vol. 12 ›› Issue (3) : 100 -107.

PDF (1205KB)
中国工程科学 ›› 2010, Vol. 12 ›› Issue (3) : 100 -107.

新安江模型参数有效优化及不确定性评估

作者信息 +

Effective optimization and uncertainty assessment of Xin’ anjiang model parameters

Author information +
文章历史 +
PDF (1233K)

摘要

应用新安江模型进行水文模拟时,由于模型本身的不足及参数多、信息量少等原因,会出现率定的最优参数组不唯一、不稳定等问题。考虑到以往的参数优选,都只得出一个参数组,不能反映出其不确定性状况。提出应用基于马尔可夫链蒙特卡罗(MCMC)理论的SCEM-UA算法,通过双牌流域以1 h为时段间隔的36场典型洪水数据对新安江模型参数进行优选和不确定性评估。结果表明,该算法能很好地推出新安江模型参数的后验概率分布;率定和检验结果分析也表明,应用SCEM-UA算法对新安江模型进行优选和不确定评估是有效和可行的。

Abstract

While Xin'anjiang model is applied to simulate hydrograph, the "best"  parameter set calibrated may be not unique and uncertain because of model limitation, more parameters and limited information. Considering previously parameter optimization of Xin'anjiang model, there is only a unique "best"  parameter set to be found and it doesn't describe uncertainty of parameter. This paper presents using SCEM-UA algorithm based Markov Chain Monte Carlo (MCMC) methods for optimization and uncertainty assessment of Xin'anjiang model parameters by means of 36 historical floods data with one hour interval. The results demonstrate that SCEM-UA algorithm is well suited to infer the posterior distribution of Xin'anjiang model parameters. The results of calibration and validation indicate that it is feasible and effective for optimization and uncertainty assessment of Xin'anjiang model parameters.

关键词

新安江模型 / 参数率定 / 不确定性评估 / SCEM-UA

Key words

Xin'anjiang model / calibration parameter / uncertainty assessment / SCEM-UA

Author summay

王文川(1976-),男,河南鹿邑县人,博士,主要从事水电系统不确定因素分析及优化建模

引用本文

引用格式 ▾
王文川,程春田,邱林,杨斌斌 新安江模型参数有效优化及不确定性评估[J]. 中国工程科学, 2010, 12(3): 100-107 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF (1205KB)

39

访问

0

被引

详细

导航
相关文章

AI思维导图

/