基于位平面可预测性的无损图像压缩研究
Research of Lossless Image Compression Base on Level-scalability
提出了一种基于嵌入式位平面的静止连续色调图像的无损图像压缩方法:通过将1幅图像分割成两类位平面(基础层和增强层)使得该图像具有了位平面的可测量性,并且通过利用平面与平面以及每个平面中各像素之间的相关性减少冗余,从而获得优秀的压缩性能;与其他压缩算法的比较表明,基于嵌入式位平面的无损图像压缩算法由于具有位平面可测量性而体现了巨大的优越性。
A level-embedded lossless image compression method for continuous-tone still images is presented. Level (bit-plane) scalability is achieved by separating the image into two layers (the base layer and the residual layer) before compression. Excellent compression performance is obtained by exploiting both spatial and interlevel correlations. A comparison of the proposed scheme with a number of scalable and non-scalable lossless image compression algorithms indicates that the level-embedded compression incurs only a small penalty in compression efficiency over non-scalable lossless compression, while offering the significant benefit of level-scalability.
信息处理技术 / 无损图像压缩 / 上下图模型 / 嵌入式位平面
data processing techniques / lossless image compression / context-based model / embedded level
/
〈 |
|
〉 |