一种粗模糊神经分类器

曾黄麟、王晓

中国工程科学 ›› 2003, Vol. 5 ›› Issue (12) : 60-65.

PDF(3510 KB)
PDF(3510 KB)
中国工程科学 ›› 2003, Vol. 5 ›› Issue (12) : 60-65.
学术论文

一种粗模糊神经分类器

  • 曾黄麟、王晓

作者信息 +

A Rough Fuzzy Neural Classifier

  • Zeng Huanglin、 Wang Xiao

Author information +
History +

摘要

介绍一种新的粗集编码模糊神经分类器。基于粗集理论的概念,讨论了知识编码、属性简化、分类系统简化的方法;并利用模糊隶属度函数将输入精确信息映射为模糊变量信息,解决分类中病态定义的数据问题和提高系统非线性映射的分类能力;提出了结合系统参数的重要性因子的网络的模糊推理方法和粗模糊神经分类器的网络结构以及有导师的最小平方误差学习训练算法。实现的粗集编码模糊神经分类器具有网络结构空间维数低、学习算法简单、网络训练时间短、非线性特性丰富等优点。

Abstract

In this paper, the concepts of rough sets are used to define equivalence classes encoding input data sets, and eliminate redundant or insignificant attributes in data sets so that to reduce the complexity of system construction. In order to deal with ill-defined or real experimental data, an input object is represented as a fuzzy variable by fuzzy membership function, and the significant factor of the input feature corresponding to output pattern classification is incorporated to constitute a fuzzy inference so that to enhance nonlinear mapping classification. A new kind of rough fuzzy neural classifier and a learning algorithm with LSE are proposed in this paper. A integration of the merits of fuzzy and neural network technologies can not only accommodate overlapping classification and therefore increase the performance of nonlinear mapping classification, but ensure more efficiently to handle real life ambiguous and changing situations and to achieve tractability, robustness, and low-cost solutions.

关键词

模糊 / 粗集 / 神经网络 / 分类

Keywords

fuzzy sets / rough sets / neural networks / pattern classification

引用本文

导出引用
曾黄麟,王晓. 一种粗模糊神经分类器. 中国工程科学. 2003, 5(12): 60-65

参考文献

基金
四川省应用基础研究资助项目(02GY029-005)
PDF(3510 KB)

Accesses

Citation

Detail

段落导航
相关文章

/