期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《能源前沿(英文)》 doi: 10.1007/s11708-023-0901-9

Plasma spray coating on interconnector toward promoted solid oxide fuel cells and solid oxide electrolysis cells

收稿日期: 2023-08-16 录用日期: 2023-11-16 发布日期: 2023-11-16

下一篇 上一篇

摘要

Interconnector is a critical component to construct solid oxide cells (SOCs) stack. Oxidation of metallic interconnectors and Cr poisoning caused by oxidation are important factors that lead to long-term performance degradation of SOCs. Coating on the interconnector surface is an important approach to inhibit the oxidation and Cr migration of the interconnector. Herein, (La0.75Sr0.25)0.95MnO3–δ (LSM) and Mn1.5Co1.5O4 (MCO) are used to fabricate the coatings of interconnector. Two advanced thermal spray technology, atmospheric plasma spraying (APS) and low-pressure plasma spray (LPPS), are adopted for the coating preparation. The electrochemical performance, rising and cooling cycle stability, and Cr diffusion inhibition performance of the coatings are tested and evaluated. The result indicates that MCO can generate more uniform and denser coatings than LSM. In addition, MCO coatings prepared by LPPS shows the best electrochemical performance, rising and cooling cycle stability, and Cr diffusion inhibition. The initial area specific resistance (ASR) is 0.0027 Ω·cm2 at 800 °C. After 4 cooling cycle tests, the ASR increases to 0.0032 Ω·cm2 but lower than other samples. Meanwhile, the relative intense of Cr at the interface of SUS430 with MCO coatings fabricated by LPPS is lower than that of MCO fabricated by APS after 4 rising and cooling cycle operations, showing more favorable Cr diffusion inhibition performance.

相关研究