期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第4期 doi: 10.1016/j.eng.2018.07.011

降低自行车运动中股四头肌消耗的无动力膝关节外骨骼研究

Department of Robotics, Tohoku University, Sendai 980-8579, Japan

收稿日期: 2017-11-15 修回日期: 2018-03-03 录用日期: 2018-04-24 发布日期: 2018-07-19

下一篇 上一篇

摘要

自行车是一种环保且具有娱乐性的交通方式。为了减少自行车运动的能量消耗同时不消耗额外的能源,我们提出利用扭力弹簧对膝关节伸展进行支撑。我们开发了一个基于嵌入式扭转弹簧与交叉四杆机构的膝关节外骨骼原型机。在研究过程中,通过分析8 名健康男性参与者以恒定功率骑行测试的数据,对原型机性能进行了评估。记录参与者在200 W 和225 W 带有加速系统的骑行训练机运动时两个腿部股直肌的表面肌电图(EMG)。然后,通过连续小波变换在时间频率上分析这些数据。在相同的骑行速度和腿部节奏下,肌电的中值功率谱频率随骑行负荷的增加而增加。在相同的骑行载荷下,外骨骼机器人可使中值功率谱频率降低。外骨骼机器人不消耗电能,不传递净正机械功,可减轻股四头肌的活动。此项基础研究可应用于骑行辅助可穿戴设备的进一步开发。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

参考文献

[ 1 ] Bynum EB, Barrack RL, Alexander AH. Open versus closed chain kinetic exercises after anterior cruciate ligament reconstruction. A prospective randomized study. Am J Sports Med 1995;23(4):401–6. 链接1

[ 2 ] McLeod WD, Blackburn TA. Biomechanics of knee rehabilitation with cycling. Am J Sports Med 1980;8(3):175–80. 链接1

[ 3 ] Hull ML, Jorge M. A method for biomechanical analysis of bicycle pedalling. J Biomech 1985;18(9):631–44.

[ 4 ] Caldwell GE, Hagberg JM, McCole SD, Li L. Lower extremity joint moments during uphill cycling. J Appl Biomech 1999;15(2):166–81. 链接1

[ 5 ] Jorge M, Hull ML. Analysis of EMG measurements during bicycle pedalling. J Biomech 1986;19(9):683–94. 链接1

[ 6 ] Li L, Caldwell GE. Muscle coordination in cycling: effect of surface incline and posture. J Appl Physiol 1998;85(3):927–34. 链接1

[ 7 ] Da Silva JC, Tarassova O, Ekblom MM, Andersson E, Rönquist G, Arndt A. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. Eur J Appl Physiol 2016;116(9):1807–17. 链接1

[ 8 ] Houtz SJ, Fischer FJ. An analysis of muscle action and joint excursion during exercise on a stationary bicycle. J Bone Joint Surg 1959;41-A(1):123–31. 链接1

[ 9 ] Hirata Y, Isoda T, Kosuge K. Development of passive wearable walking support system based on brake control. In: Proceedings of the 2008 IEEE International Conference on Mechatronics and Automation; 2008 Aug 5–8; Takamatsu, Japan; 2008. p. 363–8. 链接1

[10] Dollar AM, Herr H. Design of a quasi-passive knee exoskeleton to assist running. In: Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008 Sep 22–26; Nice, France; 2008. p. 747–54. 链接1

[11] Spring AN, Kofman J, Lemaire ED. Design and evaluation of an orthotic knee- extension assist. IEEE Trans Neural Syst Rehabil Eng 2012;20(5):678–87. 链接1

[12] Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 2015;522(7555):212–5. 链接1

[13] Chaichaowarat R, Paez GDF, Kinugawa J, Kosuge K. Passive knee exoskeleton using torsion spring for cycling assistance. In: IROS 2017: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2017 Sep 24–28; Vancouver, BC, Canada; 2018. 链接1

[14] Bertomeu JM, Lois JM, Guillem RB, Pozo AP, Lacuesta J, Mollà CG, et al. Development of a hinge compatible with the kinematics of the knee joint. Prosthet Orthot Int 2007;31(4):371–83. 链接1

[15] Walker PS, Kurosawa H, Rovick JS, Zimmerman RA. External knee joint design based on normal motion. J Rehabil Res Dev 1985;22(1):9–22. 链接1

[16] Kurosawa H, Walker PS, Abe S, Garg A, Hunter T. Geometry and motion of the knee for implant and orthotic design. J Biomech 1985;18(7):487–99.

[17] Wozniak Timmer CA. Cycling biomechanics: a literature review. J Orthop Sports Phys Ther 1991;14(3):106–13. 链接1

[18] Ericson MO, Nisell R, Arborelius UP, Ekholm J. Muscular activity during ergometer cycling. Scand J Rehabil Med 1985;17(2):53–61. 链接1

[19] Faria IE, Cavanagh PR. The physiology and biomechanics of cycling. New York: John Wiley and Sons; 1978.

[20] Dantas JL, Camata TV, Brunetto MA, Moraes AC, Abrão T, Altimari LR. Fourier and wavelet spectral analysis of EMG signals in isometric and dynamic maximal effort exercise. In: Proceedings of the 2010 IEEE/EMBS Annual International Conference; 2010 Aug 31–Sep 4; Buenos Aires, Argentina; 2010. p. 5979–82. 链接1

[21] Karlsson JS, Ostlund N, Larsson B, Gerdle B. An estimation of the influence of force decrease on the mean power spectral frequency shift of the EMG during repetitive maximum dynamic knee extensions. J Electromyogr Kinesiol 2003;13(5):461–8. 链接1

[22] Knaflitz M, Molinari F. Assessment of muscle fatigue during biking. IEEE Trans Neural Syst Rehabil Eng 2003;11(1):17–23. 链接1

相关研究