期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第10卷 第3期 doi: 10.1016/j.eng.2021.03.031

双层高通量计算——包括翘曲情况下的有效质量计算

a Department of Physics & Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA
b Department of Physics & Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA
c Department of Physics & Department of Chemistry, University of North Texas, Denton, TX 76203, USA
d Center for Autonomous Materials Design, Duke University, Durham, NC 27708, USA
e Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA

收稿日期: 2020-07-06 修回日期: 2021-02-09 录用日期: 2021-03-10 发布日期: 2022-02-26

下一篇 上一篇

摘要

本文使用了双层高通量计算。在涉及改变晶体结构和(或)化学成分的第一层中,本文分析了选定的IIIV半导体、填充和未填充的方钴矿,以及岩盐和层状硫属化物。第二层在整个布里渊区(BZ)中搜索费米能级1.5 eV (1 eV = 1.602176×10−19 J)范围内的临界点,并通过计算有效质量来表征这些点。本文介绍了几种从第一原理计算有效质量的方法并对它们进行了比较。本文使用的方法还包括计算翘曲临界点的态密度有效质量,由于临界点存在潜在非解析性,传统方法无法给出一致的结果。本文证明了考虑能带结构的全部复杂性以及计算有效质量的互补方法价值的必要性。本文还通过计算证明翘曲仅发生在有退化性的情况下。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Setyawan W, Curtarolo S. High-throughput electronic band structure calculations: challenges and tools. Comput Mater Sci 2010;49(2):299–312. 链接1

[ 2 ] Grosso G, Parravicini GP. Solid state physics. San Diego: Academic Press; 2000. 链接1

[ 3 ] Van Hove L. The occurrence of singularities in the elastic frequency distribution of a crystal. Phys Rev 1953;89(6):1189–93. 链接1

[ 4 ] Bassani F, Parravicini GP. Electronic states and optical transitions in solids. Oxford: Pergamon Press; 1975. 链接1

[ 5 ] Mecholsky NA, Resca L, Pegg IL, Fornari M. Theory of band warping and its effects on thermoelectronic transport properties. Phys Rev B 2014;89 (15):155131. 链接1

[ 6 ] Mecholsky NA, Resca L, Pegg IL, Fornari M. Density of states for warped energy bands. Sci Rep 2016;6(1):22098. 链接1

[ 7 ] Jacoboni C, Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys 1983;55(3):645–705. 链接1

[ 8 ] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, et al. Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin Phys B 2016;25(1):018212. 链接1

[ 9 ] Hensel JC, Feher G. Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials. Phys Rev 1963;129(3):1041–62. 链接1

[10] Luttinger JM. Quantum theory of cyclotron resonance in semiconductors: general theory. Phys Rev 1956;102(4):1030–41. 链接1

[11] Hasegawa H. Theory of cyclotron resonance in strained silicon crystals. Phys Rev 1963;129(3):1029–40. 链接1

[12] Dresselhaus G, Kip AF, Kittel C, Wagoner G. Cyclotron and spin resonance in indium antimonide. Phys Rev 1955;98(2):556–7. 链接1

[13] Leotin J, Barbaste R, Askenazy S, Skolnick MS, Stradling RA, Tuchendler J. Hole mass measurement in p-type InP and GaP by submillimetre cyclotron resonance in pulsed magnetic fields. Solid State Commun 1974;15(4):693–7. 链接1

[14] Ousset JC, Leotin J, Askenazy S, Skolnick MS, Stradling RA. Cyclotron resonance measurements of the non-parabolicity of the conduction bands in silicon and germanium. J Phys C Solid State Phys 1976;9(14):2803–8. 链接1

[15] Sarkar CK, Nicholas RJ, Portal JC, Razeghi M, Chevrier J, Massies J. Effect masses and non-parabolicity in GaxIn1xAs. J Phys C Solid State Phys 1985;18 (13):2667–76. 链接1

[16] Nicholas RJ, Portal JC, Houlbert C, Perrier P, Pearsall TP. An experimental determination of the effective masses for GaxIn1xAsyP1y alloys grown on InP. Appl Phys Lett 1979;34(8):492–4. 链接1

[17] Palik ED, Picus GS, Teitler S, Wallis RF. Infrared cyclotron resonance in InSb. Phys Rev 1961;122(2):475–81. 链接1

[18] Skolnick MS, Jain AK, Stradling RA, Leotin J, Ousset JC. An investigation of the anisotropy of the valence band of GaAs by cyclotron resonance. J Phys C Solid State Phys 1976;9(14):2809–21. 链接1

[19] Young DL, Coutts TJ, Kaydanov VI, Gilmore AS, Mulligan WP. Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena. J Vac Sci Technol A 2000;18(6):2978–85. 链接1

[20] Seiler DG, Stephens AE. The Shubnikov–de Haas effect in semiconductors: a comprehensive review of experimental aspects. In: Seiler DG, editor. Modern problems in condensed matter sciences. Amsterdam: Elsevier Science Publications; 1991. p. 1031–133. 链接1

[21] Leadley DR, Nicholas RJ, Foxon CT, Harris JJ. Measurements of the effective mass and scattering times of composite fermions from magnetotransport analysis. Phys Rev Lett 1994;72(12):1906–9. 链接1

[22] Restorff JB, Houston B, Burke JR, Hayes RE. Measurement of effective mass in In0.9Ga0.1As0.22P0.78 by Shubnikov–de Haas oscillations. Appl Phys Lett 1978;32 (3):189–90. 链接1

[23] Goiran M, Millot M, Poumirol JM, Gherasoiu I, Walukiewicz W, Leotin J. Electron cyclotron effective mass in indium nitride. Appl Phys Lett 2010;96 (5):052117. 链接1

[24] Harper PG, Hodby JW, Stradling RA. Electrons and optic phonons in solids—the effects of longitudinal optical lattice vibrations on the electronic excitations of solids. Rep Prog Phys 1973;36(1):1. 链接1

[25] Stradling RA, Wood RA. The temperature dependence of the band edge effective masses of InSb, InAs and GaAs as deduced from magnetophonon magnetoresistance measurements. J Phys C Solid State Phys 1970;3(5):L94–9. 链接1

[26] Nava F, Canali C, Jacoboni C, Reggiani L, Kozlov SF. Electron effective masses and lattice scattering in natural diamond. Solid State Commun 1980;33 (4):475–7. 链接1

[27] Canali C, Jacoboni C, Nava F, Ottaviani G, Alberigi-Quaranta A. Electron drift velocity in silicon. Phys Rev B 1975;12(6):2265–84. 链接1

[28] Fawcett W, Boardman AD, Swain S. Monte Carlo determination of electron transport properties in gallium arsenide. J Phys Chem Solids 1970;31 (9):1963–90. 链接1

[29] Fawcett W, Paige EGS. Negative differential mobility of electrons in germanium: a Monte Carlo calculation of the distribution function, drift velocity and carrier population in the (111) and (100) minima. J Phys C Solid State Phys 1971;4(13):1801–21. 链接1

[30] Spitzer WG, Fan HY. Determination of optical constants and carrier effective mass of semiconductors. Phys Rev 1957;106(5):882–90. 链接1

[31] Spitzer WG, Whelan JM. Infrared absorption and electron effective mass in ntype gallium arsenide. Phys Rev 1959;114(1):59–63. 链接1

[32] Weisbuch C, Hermann C. Optical detection of conduction-electron spin resonance in GaAs, Ga1xInxAs, and Ga1xAlxAs. Phys Rev B 1977;15 (2):816–22. 链接1

[33] Cardona M, Paul W, Brooks H. The temperature dependence of the polarizability of the free carriers in germanium and silicon. Helv Phys Acta 1960;33:329–46. 链接1

[34] Cardona M. Electron effective masses of InAs and GaAs as a function of temperature and doping. Phys Rev 1961;121(3):752–8. 链接1

[35] Lyden HA. Measurement of the conductivity effective mass in semiconductors using infrared reflection. Phys Rev 1964;134(4A):A1106–12. 链接1

[36] Armiento R, Kozinsky B, Hautier G, Fornari M, Ceder G. High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability. Phys Rev B 2014;89(13):134103. 链接1

[37] Armiento R, Kozinsky B, Fornari M, Ceder G. Screening for high-performance piezoelectrics using high-throughput density functional theory. Phys Rev B 2011;84(1):014103. 链接1

[38] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol 2018;13(3):246–52. 链接1

[39] Burton LA, Ricci F, Chen W, Rignanese GM, Hautier G. High-throughput identification of electrides from all known inorganic materials. Chem Mater 2018;30(21):7521–6. 链接1

[40] Li R, Li X, Xi L, Yang J, Singh DJ, Zhang W. High-throughput screening for advanced thermoelectric materials: diamond-like ABX2 compounds. ACS Appl Mater Interfaces 2019;11(28):24859–66. 链接1

[41] Aykol M, Kim S, Hegde VI, Snydacker D, Lu Z, Hao S, et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat Commun 2016;7(1):13779. 链接1

[42] Zhu H, Hautier G, Aydemir U, Gibbs ZM, Li G, Bajaj S, et al. Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. J Mater Chem C 2015;3(40):10554–65. 链接1

[43] Alberi K, Nardelli MB, Zakutayev A, Mitas L, Curtarolo S, Jain A, et al. The 2019 materials by design roadmap. J Phys D Appl Phys 2019;52(1):013001. 链接1

[44] Agapito LA, Fornari M, Ceresoli D, Ferretti A, Curtarolo S, Nardelli MB. Accurate tight-binding Hamiltonians for two-dimensional and layered materials. Phys Rev B 2016;93(12):125137. 链接1

[45] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 2009;21(39):395502. 链接1

[46] Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, et al. Advanced capabilities for materials modelling with Quantum Espresso. J Phys Condens Matter 2017;29(46):465901. 链接1

[47] Supka AR, Lyons TE, Liyanage L, D’Amico P, Al Rahal Al Orabi R, Mahatara S, et al. AFLOWp: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding Hamiltonians. Comput Mater Sci 2017;136:76–84. 链接1

[48] Agapito LA, Curtarolo S, Nardelli MB. Reformulation of DFT + U as a pseudohybrid hubbard density functional for accelerated materials discovery. Phys Rev X 2015;5(1):011006. 链接1

[49] Gopal P, Fornari M, Curtarolo S, Agapito LA, Liyanage LSI, Nardelli MB. Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: a validation of the ACBN0 functional. Phys Rev B 2015;91(24):245202. 链接1

[50] Lee S, Wang H, Gopal P, Shin J, Jaim HMI, Zhang X, et al. Systematic band gap tuning of BaSnO3 via chemical substitutions: the role of clustering in mixedvalence perovskites. Chem Mater 2017;29(21):9378–85. 链接1

[51] Gopal P, De Gennaro R, Gusmao MSDS, Al Rahal Al Orabi R, Wang H, Curtarolo S, et al. Improved electronic structure and magnetic exchange interactions in transition metal oxides. J Phys Condens Matter 2017;29(44):444003. 链接1

[52] Dal Corso A. Pseudopotentials periodic table: from H to Pu. Comput Mater Sci 2014;95:337–50. 链接1

[53] Nardelli MB, Cerasoli FT, Costa M, Curtarolo S, De Gennaro R, Fornari M, et al. PAOFLOW: a utility to construct and operate on ab initio Hamiltonians from the projections of electronic wavefunctions on atomic orbital bases, including characterization of topological materials. Comput Mater Sci 2018;143:462–72. 链接1

[54] Hirao K. Analytic derivative theory based on the Hellmann–Feynman theorem. Can J Chem 1992;70(2):434–42. 链接1

[55] Yates JR, Wang X, Vanderbilt D, Souza I. Spectral and Fermi surface properties from Wannier interpolation. Phys Rev B 2007;75(19):195121. 链接1

[56] Arfken GB, Weber HJ. Mathematical methods for physicists. 6th ed. Boston: Elsevier; 2005. 链接1

[57] Goldstein H, Poole C, Safko J, Addison SR. Classical mechanics. Am J Phys 2002;70(7):782–3. 链接1

[58] Andrevv AA. The band edge structure of the IV–VI semiconductors. J Phys Colloq 1968;29(C4):C4-50–61. 链接1

[59] Vurgaftman I, Meyer JR, Ram-Mohan LR. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 2001;89(11):5815–75. 链接1

[60] Resca L, Mecholsky NA, Pegg IL. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures. Phys B 2017;522:66–74. 链接1

[61] Lavasani A, Bulmash D, Sarma SD. Wiedemann–Franz law and Fermi liquids. Phys Rev B 2019;99(8):085104. 链接1

[62] Transtrum MK, Qiu P. Model reduction by manifold boundaries. Phys Rev Lett 2014;113(9):098701. 链接1

相关研究