期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第21卷 第2期 doi: 10.1016/j.eng.2021.07.012

生物质制备纳米零价铁生物炭的铁相转移和原位还原机制

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China

收稿日期: 2020-03-04 修回日期: 2020-05-11 录用日期: 2021-07-14 发布日期: 2021-09-02

下一篇 上一篇

摘要

纳米零价铁生物炭(nZVI-BC)作为一种由废弃生物质制备的环境友好型材料,可有效解决生物质转化和环境污染问题。然而,复杂的生物质/生物炭改性过程阻碍了它们的进一步生产和应用。在本研究中,一种绿色溶剂聚乙二醇400(PEG400)被引入FeCl3⋅6H2O改性水稻秸秆(RS)的反应体系中,改性后的RS通过一步热解法被转化为nZVI-BC。PEG400 的添加促进了铁离子的水解并改善了RS的表面结构,有利于Fe2O3附着到RS表面。在60 ℃、80 ℃、100 ℃和0.5 h 的改性条件下,RS中木质素组分损失不多,有利于高温热解过程中碳骨架的形成。Fe2O3在热解产生的还原气体和无定形碳的帮助下被还原,最终形成nZVI-BC。将该方法制备的nZVI-BC 用于染料刚果红的催化高级氧化去除,结果表明,nZVI-BC 具有快速的吸附能力(5 min 时吸附效果为70.6%)和高效的催化降解能力(60 min 时催化降解90%)。本研究为nZVI-BC的制备提供了一种新的策略,为其规模化生产和应用奠定了基础。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Liu W, Jiang H, Yu H. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 2015;115:12251‒85. 链接1

[ 2 ] Xiao Q, Chen W, Tian D, Shen F, Hu J, Long L, et al. Integrating the bottom ash residue from biomass power generation into anaerobic digestion to improve biogas production from lignocellulosic biomass. Energy Fuels 2020;34:1101‒10. 链接1

[ 3 ] Jiang SF, Sheng GP, Jiang H. Advances in the characterization methods of biomass pyrolysis products. ACS Sustain Chem Eng 2019;7:12639‒55. 链接1

[ 4 ] Zhong D, Jiang Y, Zhao Z, Wang L, Chen J, Ren S, et al. pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties. Environ Sci Technol 2019;53:9034‒44. 链接1

[ 5 ] Xu W, Li Z, Shi S, Qi J, Cai S, Yu Y, et al. Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: characterization and trichloroethene dechlorination. Appl Catal B Environ 2020;262:118303. 链接1

[ 6 ] Liu Z, Zhang F. Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresour Technol 2010;101:2562‒4. 链接1

[ 7 ] Li Z, Sun Y, Yang Y, Han Y, Wang T, Chen J, et al. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. J Hazard Mater 2020;383:121240. 链接1

[ 8 ] Li S, Tang J, Liu Q, Liu X, Gao B. A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol. Environ Int 2020;138:105639. 链接1

[ 9 ] Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 2008;42:2600‒5. 链接1

[10] Vilardi G, Verdone N, Bubbico R. Combined production of metallic-iron nanoparticles: exergy and energy analysis of two alternative processes using Hydrazine and NaBH4 as reducing agents. J Taiwan Inst Chem E 2021;118:97‒111. 链接1

[11] Vilardi G, Verdone N. Production of metallic iron nanoparticles in a baffled stirred tank reactor: optimization via computational fluid dynamics simulation. Particuology 2020;52:83‒96. 链接1

[12] Su Y, Cheng Y, Shih YH. Removal of trichloroethylene by zerovalent iron/ activated carbon derived from agricultural wastes. J Environ Manage 2013;129:361‒6. 链接1

[13] L’vov BV. Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim Acta 2000;360:109‒20. 链接1

[14] Neeli ST, Ramsurn H. Synthesis and formation mechanism of iron nanoparticles in graphitized carbon matrices using biochar from biomass model compounds as a support. Carbon 2018;134:480‒90. 链接1

[15] Guo X, Zhang T, Shu S, Zheng W, Gao M. Compositional and structural changes of corn cob pretreated by electron beam irradiation. ACS Sustain Chem Eng 2017;5:420‒5. 链接1

[16] Zhuo S, Yan X, Liu D, Si M, Zhang K, Liu M, et al. Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion. Biotechnol Biofuels 2018;11:146. 链接1

[17] Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007;86:1781‒8. 链接1

[18] Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 2017;62:33‒86. 链接1

[19] Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv 2011;29:675‒85. 链接1

[20] Chundawat SPS, Donohoe BS, da Costa SL, Elder T, Agarwal UP, Lu F, et al. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 2011;4:973. 链接1

[21] Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol 2016;214:836‒51. 链接1

[22] Chen J, Spear SK, Huddleston JG, Holbrey JD, Swatloski RP, Rogers RD. Application of poly(ethylene glycol)-based aqueous biphasic systems as reaction and reactive extraction media. Ind Eng Chem Res 2004;43:5358‒64. 链接1

[23] Rogers RD, Bond AH, Bauer CB. Metal ion separations in polyethylene glycolbased aqueous biphasic systems. Sep Sci Technol 1993;28:1091‒126. 链接1

[24] Zhu K, Xu H, Chen C, Ren X, Alsaedi A, Hayat T. Encapsulation of Fe0-dominated Fe3O4/Fe0/Fe3C nanoparticles into carbonized polydopamine nanospheres for catalytic degradation of tetracycline via persulfate activation. Chem Eng J 2019;372:304‒11. 链接1

[25] Chen L, Feng S, Zhao D, Chen S, Li F, Chen C. Efficient sorption and reduction of U(VI) on zero-valent iron-polyanilinegraphene aerogel ternary composite. J Colloid Interf Sci 2017;490:197‒206. 链接1

[26] Jiang X, Guo Y, Zhang L, Jiang W, Xie R. Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon. Chem Eng J 2018;341:392‒401. 链接1

[27] Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 2013;130:457‒62. 链接1

[28] Yu J, Tang L, Pang Y, Zeng G, Wang J, Deng Y, et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism. Chem Eng J 2019;364:146‒59. 链接1

[29] Wang J, Shao X, Tian G, Li Z, Bao W. Preparation and properties of α-Fe microparticles with high stability. Mater Lett 2017;192:36‒9. 链接1

[30] Ferrari AC, Rodil SE, Robertson J. Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys Rev B 2003;67:155306. 链接1

[31] He F, Zhao D. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 2007;41:6216‒21. 链接1

[32] Krajangpan S, Kalita H, Chisholm BJ, Bezbaruah AN. Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: dispersibility and contaminant treatability. Environ Sci Technol 2012;46:10130‒6. 链接1

[33] Gong J, Yao K, Liu J, Jiang Z, Chen X, Wen X, et al. Striking influence of Fe2O3 on the “catalytic carbonization” of chlorinated poly(vinyl chloride) into carbon microspheres with high performance in the photo-degradation of Congo red. J Mater Chem A 2013;1:5247. 链接1

[34] Sun Y, Zhang Z, Sun Y, Yang G. One-pot pyrolysis route to Fe-N-Doped carbon nanosheets with outstanding electrochemical performance as cathode materials for microbial fuel cell. Int J Agric Biol Eng 2020;13:2017‒114. 链接1

[35] Dong H, Deng J, Xie Y, Zhang C, Jiang Z, Cheng Y, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J Hazard Mater 2017;332:79‒86. 链接1

[36] Qian L, Zhang W, Yan J, Han L, Chen Y, Ouyang D, et al. Nanoscale zerovalent iron supported by biochars produced at different temperatures: synthesis mechanism and effect on Cr(VI) removal. Environ Pollut 2017;223:153‒60. 链接1

[37] Chen B, Zhou D, Zhu L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 2008;42:5137‒43. 链接1

[38] Zhu Y, Li H, Zhang G, Meng F, Li L, Wu S. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: acid washing, nanoscale zero-valent iron and ferric iron loading. Bioresour Technol 2018;261:142‒50. 链接1

[39] Li Y, Jin Z, Li T. A novel and simple method to synthesize SiO2-coated Fe nanocomposites with enhanced Cr(VI) removal under various experimental conditions. Desalination 2012;288:118‒25. 链接1

[40] Qian L, Chen B. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environ Sci Technol 2013;47:8759‒68. 链接1

[41] Yang J, Zhao Y, Ma S, Zhu B, Zhang J, Zheng C. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environ Sci Technol 2016;50:12040‒7. 链接1

[42] Nge TT, Tobimatsu Y, Takahashi S, Takata E, Yamamura M, Miyagawa Y, et al. Isolation and characterization of polyethylene glycol (PEG)-modified glycol lignin via PEG solvolysis of softwood biomass in a large-scale batch reactor. ACS Sustain Chem Eng 2018;6:7841‒8. 链接1

[43] Li H, Wang C, Xiao W, Yang Y, Hu P, Dai Y, et al. Dissecting the effect of polyethylene glycol on the enzymatic hydrolysis of diverse lignocellulose. Int J Biol Macromol 2019;131:676‒81. 链接1

[44] Wu X, Huang C, Tang W, Huang C, Lai C, Yong Q. Use of metal chlorides during waste wheat straw autohydrolysis to overcome the self-buffering effect. Bioresour Technol 2018;268:259‒65. 链接1

[45] Chen L, Chen R, Fu S. FeCl3 pretreatment of three lignocellulosic biomass for ethanol production. ACS Sustain Chem Eng 2015;3:1794‒800. 链接1

[46] Lee CC, Doong RA. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions. Environ Sci Technol 2011;45:2301‒7. 链接1

[47] Chen J, Spear SK, Huddleston JG, Rogers RD. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 2005;7:64. 链接1

[48] Guilminot E, Dalard F, Degrigny C. Mechanism of iron corrosion in water‒polyethylene glycol (PEG 400) mixtures. Corros Sci 2002;44:2199‒208. 链接1

[49] Crane RA, Scott TB. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 2012;211‒2:112‒25.

[50] Zhang H, Ruan Y, Liang A, Shih K, Diao Z, Su M, et al. Carbothermal reduction for preparing nZVI/BC to extract uranium: insight into the iron species dependent uranium adsorption behavior. J Clean Prod 2019;239:117873. 链接1

[51] Siengchum T, Isenberg M, Chuang SSC. Fast pyrolysis of coconut biomass—an FTIR study. Fuel 2013;105:559‒65. 链接1

[52] Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 2016;57:1126‒40. 链接1

[53] Meng X, Sun Q, Kosa M, Huang F, Pu Y, Ragauskas AJ. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustain Chem Eng 2016;4:4563‒72. 链接1

[54] Hao N, Bezerra TL, Wu Q, Ben H, Sun Q, Adhikari S, et al. Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process. Fuel 2017;206:494‒503. 链接1

[55] Fruehan RJ. The Rate of reduction of iron oxides by carbon. Metall Trans B Process Metall 1977;8:279‒86. 链接1

[56] Zhang K, Liu M, Zhang T, Min X, Wang Z, Chai L, et al. High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization. J Mater Chem A 2019;7:26838‒48. 链接1

[57] Di Palma L, Verdone N, Vilardi G. Kinetic modeling of Cr(VI) reduction by nZVI in soil: the influence of organic matter and manganese oxide. Bull Environ Contam Toxicol 2018;101:692‒7. 链接1

[58] Goddeti SMR, Bhaumik M, Maity A, Ray SS. Removal of Congo red from aqueous solution by adsorption using gum ghatti and acrylamide graft copolymer coated with zero valent iron. Int J Biol Macromol 2020;149:21‒30. 链接1

[59] Li B, Yin H. Superior Adsorption property of a novel green biosorbent Yttrium/ Alginate gel beads for dyes from aqueous solution. J Polym Environ 2020;28:2137‒48. 链接1

相关研究